Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Phase composition and biocompatibility of calcium phosphate coatings on titanium enriched with hydroxyapatite

A.E. Doroshenko1, V.K. Krut’ko1, O.N. Musskaya1, A.I. Dovnar2, O.B. Ostrowskaya2, Ye..M. Doroshenko2, A.I. Kulak1

1 Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
2 Grodno State Medical University, Grodno, Belarus

DOI: 10.26456/pcascnn/2023.15.708

Original article

Abstract: Calcium phosphate coatings containing brushite, calcite, and apatite were obtained by electrochemical deposition on titanium plates at room temperature, pH 5, constant current density 30 mA/cm2, from CaCO3/Ca(H2PO4)2 suspension electrolyte. A layer of amorphous apatite was deposited by the biomimetic method, by keeping the coatings in a concentrated modeling solution of Simulated Body Fluid. As a result of heat treatment at 800°C, apatite crystallized into hydroxyapatite, calcite decomposed to calcium oxide, and titanium was covered with a layer of titanium (IV) oxide. Preclinical studies on rats in vivo for 3 months showed increased osseointegration of plates with calcium phosphate coatings compared to uncoated titanium. Titanium implants with calcium phosphate coatings enriched with hydroxyapatite are promising for use in neurosurgery, dentistry, orthopedics due to the absence of inflammatory reactions from the body and increased osseointegration.

Keywords: calcium phosphate coatings, brushite, calcite, SBF model solution, apatite, hydroxyapatite

  • Anna E. Doroshenko – Junior Researcher, Photochemistry and Electrochemistry Laboratory, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
  • Valentina K. Krut’ko – Ph. D., Assistant Professor, Head of the Laboratory of Photochemistry and Electrochemistry, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
  • Olga N. Musskaya – Ph. D., Assistant Professor, Leading Researcher of Photochemistry and Electrochemistry Laboratory, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
  • Andrey I. Dovnar – Assistant of the Department of Neurology and Neurosurgery, Grodno State Medical University
  • Oksana B. Ostrowskaya – Ph. D., Associate Professor, Senior Researcher, Research Laboratory, Grodno State Medical University, Grodno, Belarus
  • Yevgeni M. Doroshenko – Ph. D., Associate Professor, Leading Researcher, Research Laboratory, Grodno State Medical University, Grodno, Belarus
  • Anatoly I. Kulak – Academician, National Academy of Sciences of Belarus, Dr. Sc., Professor, Director, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Reference:

Doroshenko, A.E. Phase composition and biocompatibility of calcium phosphate coatings on titanium enriched with hydroxyapatite / A.E. Doroshenko, V.K. Krut’ko, O.N. Musskaya, A.I. Dovnar, O.B. Ostrowskaya, Ye..M. Doroshenko, A.I. Kulak // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 708-717. DOI: 10.26456/pcascnn/2023.15.708. (In Russian).

Full article (in Russian): download PDF file

References:

1. Williams D.F. Titanium for medical applications, Titanium in medicine: material science, surface science, engineering, biological responses, and medical applications, ed. by D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Berlin, New York, Springer, 2001, chapter 1, pp. 13-24.
2. Zhang L.C., Chen L.Y. A review on biomedical titanium alloys: recent progress and prospect, Advanced Engineering Materials, 2019, vol. 21, issue 4, pp. 1-29. DOI: 10.1002/adem.201801215.
3. Eliaz, N. Corrosion of metallic biomaterials: a review, Materials, 2019, vol. 12, issue 3, art. no. 407, 91 p. DOI: 10.3390/ma12030407.
4. Zhang L.C., Chen L.Y. Wang L Surface modification of titanium and titanium alloys: technologies, developments, and future interests, Advanced Engineering Materials, 2020, vol. 22, issue 5, art. no. 1901258, 37 p. DOI: 10.1002/adem.201901258.
5. Bochetta P., Chen L.Y., Corpa Tardell J.D. et al. Passive layers and corrosion resistance of biomedical Ti-6Al4V and β-Ti Alloys, Coatings, 2021, vol. 11, issue 5, art. no. 487, 32 p. DOI:10.3390/coatings11050487.
6. Asri R.I.M., Harun W.S.W, Samykano M. et al. Corrosion and surface modification on biocompatible metals: A review, Materials Science and Engineering: C, 2017, vol. 77, pp. 1261-1274. DOI:10.1016/j.msec.2017.04.102.
7. Milošev I., Kosec T., Strehblow H.H. XPS and EIS study of the passive film formed on orthopaedic Ti–6Al–7Nb alloy in Hank’s physiological solution, Electrochimica Acta, 2008, vol. 53, issue 99, pp. 3547-3558. DOI: 10.1016/j.electacta.2007.12.041.
8. Gao A., Hang R., Bai L. et al. Electrochemical surface engineering of titanium-based alloys for biomedical application, Electrochimica Acta, 2018, vol. 271, pp. 699-718. DOI: 10.1016/j.electacta.2018.03.180.
9. Chen Q., Thouas G.A. Metallic implant biomaterials, Materials Science and Engineering: R: Reports, 2015, vol. 87, pp. 1-57. DOI: 10.1016/j.mser.2014.10.001.
10. Dorozhkin, S.V. Calcium orthophosphate deposits: Preparation, properties and biomedical applications, Materials Science and Engineering: C, 2015, vol. 55, pp. 272-326. DOI: 10.1016/j.msec.2015.05.033.
11. Tang Z., Li X., Tan Y. et al. The material and biological characteristics of osteoinductive calcium phosphate ceramics, Regenerative Biomaterials, 2018, vol. 5, issue 1, pp. 43-59. DOI: 10.1093/rb/rbx024.
12. Xiao D., Zhang J., Zhang C. et al. The role of calcium phosphate surface structure inosteogenesis and the mechanisms involved, Acta Biomaterialia, 2020, vol. 106, pp. 22-33. DOI: 10.1016/j.actbio.2019.12.034.
13. Habraken W., Habibovic P., Epple M., Bohner M. Calcium phosphates in biomedical applications: materials for the future? Mater. Today, 2016, vol. 19, issue 2, pp. 69-87. DOI: 10.1016/j.mattod.2015.10.008.
14. Eliaz, N., Metoki, N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications, Materials, 2017, vol. 10, issue 4, art. no. 334, 104 p. DOI: 10.3390/ma10040334.
15. Wang H., Eliaz N., Xiang Z. et al. Early bone apposition in vivo on plasma-spryed and electrochemically deposited hydroxyapatite on titanium alloy, Biomaterials, 2006, vol. 27, issue 23, pp. 4192-4203. DOI: 10.1016/j.biomaterials.2006.03.034.
16. Heimann R. Osseoconductive and corrosion-inhibiting plasma-sprayed calcium phosphate coatings for metallic medical implants, Metals, 2017, vol. 7, issue 11, pp. 468-487. DOI: 10.3390/met7110468.
17. Kreller T., Sahm F., Bader R. et al. Biomimetic calcium phosphate coatings for bioactivation of titanium implant surfaces: methodological approach and in vitro evaluation of biocompatibility, Materials, 2021, vol. 14, issue 13, art. no. 3516, 18 p. DOI: 10.3390/ma14133516.
18. Li T.T., Ling L., Lin M.C. et al. Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition, Journal of Materials Science, 2020, vol. 55, issue 15, pp. 6352-6374. DOI: 10.1007/s10853-020-04467-z.
19. Drevet R., Benhayoune H. Electrodeposition of calcium phosphate coatings on metallic substrates for bone implant applications: a review, Coatings, 2022, vol. 12, issue 4, art. no 539, 24 p. DOI: 10.3390/coatings12040539.
20. Wang M.C., Chen H.T., Shih W.J. et al. Crystalline size, microstructure and biocompatibility of hydroxyapatite nanopowders by hydrolysis of calcium hydrogen phosphate dehydrate (DCPD), Ceramics International, 2015, vol. 41, issue 2, part B, pp. 2999-3008. DOI: 10.1016/j.ceramint.2014.10.135.
21. Drevet R., Fauré J., Benhayoune H. Structural and morphological study of electrodeposited calcium phosphate materials submitted to thermal treatment, Materials Letters, 2017, vol. 209, pp. 27-31. DOI: 10.1016/j.matlet.2017.07.101.
22. Krut'ko, V.K., Doroshenko A.E., Musskaya O.N. i dr. Formiroovanie apatitov na ehlektroosazhdennykh kal'tsiifosfatakh v sistemakh Ca(NO3)2/NH4H2PO4 i CaCO3/Ca(H2PO4)2 [Apatites formation on electrodeposited calcium phosphates in the Ca(NO3)2/NH4H2PO4 and CaCO3/Ca(H2PO4)2 systems], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 860-869. DOI: 10.26456/pcascnn/2021.13.860. (In Russian).
23. Kokubo T., Takadama H. Simulated body fluid (SBF) as a standard tool to test the bioactivity of implants, Handbook of Biomineralization: Biological Aspects and Structure Formation, ed. by E. Epple, E. Bäuerlein, Weinheim, WILEY‐VCH Verlag GmbH & Co. KGaA, 2007, chapter 7, pp. 97-109. DOI: 10.1002/9783527619443.ch51.
24. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url: https://www.icdd.com/pdf-2 (accessed 15.06.2021).
25. Volkova O.V., Eleckij Yu.K. Osnovy gistologii s gistologicheskoj tekhnikoj [Fundamentals of histology with histological technique], Moscow, Medicina Publ. [Medicine Publ.], 1982, 304 p. (In Russian).
26. Krut'ko, V.K., Doroshenko A.E., Musskaya O.N., Kulak A.I. Poluchenie oktakal'tsijfosfata v vodnoj srede pri vzaimodejstvii kal'tsita s monokal'tsijfosfatom monogidratom [Obtaining octacalcium phosphate in an aqueous medium by the interaction of calcite with monocalcium phosphate monohydrate], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 782-790. DOI: 10.26456/pcascnn/2022.14.782. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒