Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Calculation of CO2 P-ρ-T properties in the temperature range from T = 400 K to T = 1700 K

R.A. Magomedov, E.N. Akhmedov

Institute for Geothermal Researches and Renewable Energy, The Joint Institute for High Temperatures of the Russian Academy of Sciences

DOI: 10.26456/pcascnn/2023.15.274

Original article

Abstract: Сalculation of the carbon dioxide state equation isotherms in the temperature range from T = 400 K to T = 1700 K is presented. Implemented calculation method is a refinement of the previously proposed approach based on the fractal state equation and specially developed software Fract EOS. The calculation results are in good agreement with the experimental data. It is shown, that the fitting parameter α of the fractal state equation for carbon dioxide does not depend on temperature. The density dependence can be accurately approximated using the polynomial. This fact simplifies the calculation of isotherms in a wide temperature range, and allowed to make the calculation for temperatures, that are not presented in the tabular reference data. The obtained results show that the proposed equation of state is suitable for studying not only simple substances like noble gases, but also for more complex substances, such as carbon dioxide.

Keywords: equation of state, integral-differentiation of fractional order, Maxwell relations, Helmholtz potential, partition function, carbon dioxide, isotherm, thermophysical properties

  • Ramazan A. Magomedov – Senior Researcher, Institute for Geothermal Researches and Renewable Energy, The Joint Institute for High Temperatures of the Russian Academy of Sciences
  • Enver N. Akhmedov – Researcher, Institute for Geothermal Researches and Renewable Energy, The Joint Institute for High Temperatures of the Russian Academy of Sciences

Reference:

Magomedov, R.A. Calculation of CO2 P-ρ-T properties in the temperature range from T = 400 K to T = 1700 K / R.A. Magomedov, E.N. Akhmedov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 274-281. DOI: 10.26456/pcascnn/2023.15.274. (In Russian).

Full article (in Russian): download PDF file

References:

1. Kaplun A.B., Meshalkin A.B. Calculating the thermodynamic properties of carbon dioxide in the range of pressures up to 200 MPa, Russian Journal of Physical Chemistry A, 2019, vol. 93, no. 9, pp. 1641-1648. DOI: 10.1134/S0036024419090073.
2. Lees E.W., Mowbray B.A.W., Parlane F.G.L., Berlinguette C.P. Gas diffusion electrodes and membranes for CO2 reduction electrolysers, Nature Reviews Materials, 2022, vol. 7, no. 1, pp. 55-64. DOI: 10.1038/s41578-021-00356-2.
3. Al Rowaihi I., Kick B., Grötzinger S.W. et al. A two-stage biological gas to liquid transfer process to convert carbon dioxide into bioplastic, Bioresource Technology Reports, 2018, vol. 1, pp. 61-68. DOI: 10.1016/j.biteb.2018.02.007.
4. GOST ISO 817-2014. Khladagenty. Sistema oboznachenij [Refrigerants. Notation system]. Moscow: Standartinform, Publ., 2014, 10 p. (In Russian).
5. ISO 817:2005. Refrigerants – Designation system. Geneva, Switzerland, International Organisation for Standardization Publ., 2005, 10 p.
6. Khanam M., Daim T.U. A regional technology roadmap to enable the adoption of CO2 heat pump water heater: A case from the Pacific Northwest USA, Energy Strategy Reviews, 2017, vol. 18, pp. 157-174. DOI: 10.1016/j.esr.2017.09.019.
7. O poligonakh dlya razrabotki i ispytanij tekhnologij kontrolya uglerodnogo balansa [About testing grounds for the development and testing of carbon balance control technologies], Order of the Ministry of Education and Science of the Russian Federation no. 74 on Februrary 05, 2021. (in Russian).
8. Kilbas A.A., Samko S.G. Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya [Fractional integrals and derivatives and some of their applications]. Minsk, Nauka i tekhnika Publ., 1987, 688 p. (In Russian).
9. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. NorthHolland, Amsterdam, Elsevier, 2006, 540 р.
10. Landau L.D., Lifshitz E.M. Teoreticheskaya fizika. Tom 5, Chast’ 1: Statisticheskaya fizika [Theoretical physics. Vol. 5, Part 1: Statistical physics]. Moscow, Fizmatlit Publ., 2002, 616 p. (In Russian).
11. Sivukhin D.V. Obschiy kurs fiziki. Tom 2: Termodinamika i molekulyarnaya fizika [General course of physics. Vol. 2: Thermodynamics and molecular physics]. Moscow, Fizmatlit Publ., 2005, 544 p. (In Russian).
12. Meilanov R.P., Magomedov R.A. Thermodynamics in fractional calculus, Journal of Engineering Physics and Thermophysics, 2014, vol. 87, issue 6, pp. 1521-1531. DOI: 10.1007/s10891-014-1158-2.
13. Jahnke E., Edme F., Lösch F. Tafeln, höherer funktionen seschste auflage neubearbeitet. Stuttgart, Verlagsgesellschaft, 1960, XII+318 s.
14. Magomedov R.A., Meilanov R.R., Meilanov R.P. et al. Generalization of thermodynamics in of fractionalorder derivatives and calculation of heat-transfer properties of noble gases, Journal of Thermal Analysis and Calorimetry, 2018, vol. 133, issue 2, pp. 1189-1194. DOI: 10.1007/s10973-018-7024-2.
15. Altunin V.V. GSSSD 96-86. Tablitsy standartnykh spravochnykh dannykh. Dioksid ugleroda zhidkij i gazoobraznyj [Tables of standard reference data. Carbon dioxide liquid and gaseous]. Moscow, IPK Standartov Publ., 1986, 25 p. (In Russian).
16. Fizicheskie velichiny. Spravochnik [Physical quantities. Handbook], ed. by I.S. Grigor'eva, E.Z. Mejlikhova, Moscow, Energiya Publ., 1991, 1232 p. (In Russian).
17. Magomedov R.A., Akhmedov E.N. Raschet P-ρ-T svoistv vodyanogo para v diapazone temperature ot 773 K do 1673 K [Water vapor P-ρ-T properties calculation in the temperature range from 773 K to 1673 K], Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 446-452. DOI: 10.26456/pcascnn/2022.14.298. (In Russian).
18. Akhmedov E.N., Magomedov R.A., Aliverdiev A.A. Fract EOS. Certificate RF, no 2021661219, 2021. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒