Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Temperature dependence of Cu:SnO2 film conductivity in air medium

N.A. Klychkov, V.V. Simakov, I.S. Sinev

Saratov State University

DOI: 10.26456/pcascnn/2023.15.119

Original article

Abstract: Temperature conductivity studies of films based on Cu:SnO2 made by magnetron sputtering of the mixed target CuO/SnO2 have been carried out. Temperature conductivity dependencies were substantially nonlinear. It was found that the local conductivity minimum was observed near the temperature of 330°C. To explain the results, a mathematical model is proposed of oxygen adsorption in various forms on the surface of wide-bandgap semiconductors. It was assumed that oxygen particle adsorption resulted in energy levels of the acceptor type localized near the surface of the semiconductor. The simulation carried out within the proposed model showed qualitative and quantitative consistency of the calculation results and experimental data of the temperature dependence of conductivity of the formed gas-sensitive Cu:SnO2 layers in oxygen-containing atmosphere. An analysis of experimental temperature dependence showed that the local conductivity minimum is due to the process of dissociation of oxygen particles adsorbed in molecular form. The desorption energies of each form of adsorbed oxygen and the depth of their surface acceptor level are assessed.

Keywords: temperature dependence of conductivity, oxygen dissociation, tin dioxide, gas sensitivity model

  • Nikita A. Klychkov – 1st year postgraduate student, Physics Institute, Saratov State University, Saratov State University
  • Viacheslav V. Simakov – Dr.Sc., Professor, Material Sciences, Technologies and Quality Management Department, Saratov State University
  • Ilya S. Sinev – Ph.D., Docent, Material Sciences, Technologies and Quality Management Department, Saratov State University

Reference:

Klychkov, N.A. Temperature dependence of Cu:SnO2 film conductivity in air medium / N.A. Klychkov, V.V. Simakov, I.S. Sinev // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 119-126. DOI: 10.26456/pcascnn/2023.15.119. (In Russian).

Full article (in Russian): download PDF file

References:

1. Klychkov N.A., Simakov V.V., Sinev I.V., Shikunov D.A Vliyanie dobavok oksidov medi i tsinka naelektricheskie i gazochuvstvitel'nye svojstva kompozitnykh sloyov dioksida olova [The effect of copper and zinc oxide additives on the electrical and gas-sensitive properties of tin dioxide composite layers], Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 632-638. DOI: 10.26456/pcascnn/2022.14.632. (In Russian).
2. Klychkov N.A., Simakov V.V., Sinev I.V., Timoshenko D.A. Dinamika otklika sensora na osnove nanostrukturirovannogo sloya dioksida olova pri vozdejstvii parov izopropanola [Dynamics of response of a sensor based on a nanostructured tin dioxide layer exposed to the isopropanol vapors], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 708-716. DOI: 10.26456/pcascnn/2021.13.708. (In Russian).
3. Oberhüttinger С., Hackner A., Müller G., Stutzmann M. On the temperature dependence of the resistive and surface ionisation response of SnO2 gas sensing layers, Sensors and Actuators B: Chemical, 2011, vol. 156, issue 2, pp. 563-571. DOI: 10.1016/j.snb.2011.01.069.
4. Ma Y.J., Zhou F., Lu L., Zhang Z. Low-temperature transport properties of individual SnO2 nanowires, Solid State Communications, 2004, vol. 130, issue 5, pp. 313-316. DOI: 10.1016/j.ssc.2004.02.013.
5. Ramarajan R., Kovendhan M., Thangaraju K., Joseph D.P. Substrate temperature dependent physical properties of spray deposited antimony-doped SnO2 thin films, Thin Solid Films, 2020, vol. 704, art. no 137988, 10 p. DOI: 10.1016/j.tsf.2020.137988.
6. Slater B., Catlow C.R.A., Williams D.E., Stoneham A.M. Dissociation of O2 on the reduced SnO2 (110) surface, Chemical Communications, 2000, issue 14, pp. 1235-1236. DOI: 10.1039/b002039g.
7. Gurlo A. Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen, ChemPhysChem, 2006, vol. 7, issue 10. 2041-2052. DOI: 10.1002/cphc.200600292.
8. Tsujita W., Yoshino A., Ishida H., Moriizumi T. Gas sensor network for air-pollution monitoring, Sensors and Actuators B: Chemical, 2005, vol. 110, issue 2, pp. 304-311. DOI: 10.1016/j.snb.2005.02.008.
9. Simakov V., Voroshilov A., Grebennikov A. et al. Gas identification by quantitative analysis of conductivityvs-concentration dependence for SnO2 sensors, Sensors and Actuators B: Chemical, 2009, vol. 137, issue 2, pp. 456-461. DOI: 10.1016/j.snb.2009.01.005.
10. Singh G., Singh R.C. Highly sensitive gas sensor based on Er-doped SnO2 nanostructures and its temperature dependent selectivity towards hydrogen and ethanol, Sensors and Actuators B: Chemical, 2019, vol. 282, pp. 373-383. DOI: 10.1016/j.snb.2018.11.086.
11. Staerz A., Weimar U., Barsan N. Current state of knowledge on the metal oxide-based gas sensing mechanism, Sensors and Actuators B: Chemical, 2022, vol. 358, art. no 131531, 18 p. DOI: 10.1016/j.snb.2022.131531.
12. Hübner M., Pavelko R.G., Barsan N., Weimar U. Influence of oxygen backgrounds on hydrogen sensing with SnO2 nanomaterials, Sensors and Actuators B: Chemical, 2011, vol. 154, issue 2, pp. 264-269. DOI: 10.1016/j.snb.2010.01.049.
13. Simakov V.V., Sinev I.V., Venig S.B. Neadditivnoe vliyanie parov vody i osveshcheniya na provodimost' plenki dioksida olova pri komnatnoj temperature [Non-additive influence of water vapor and lighting on the conductivity of tin dioxide film at room temperature], Izvestiya vysshikh uchebnykh zavedenij. Prikladnaya nelinejnaya dinamika [Izvestiya VUZ. Applied Nonlinear Dynamics], 2018, vol. 26, issue 6, pp. 48-58. DOI: 10.18500/0869-6632-2018-26-6-48-58. (In Russian).
14. Oviedo J., Gillan M.J. First-principles study of the interaction of oxygen with the SnO2 (110) surface, Surface Science, 2001, vol. 490, issue 3, pp. 221-236. DOI: 10.1016/S0039-6028(01)01372-3.
15. Kissine V.V., Sysoev V.V., Voroshilov S.A., Simakov V.V. Effect of oxygen adsorption on the conductivity of thin SnO2 films, Semiconductors, 2000, vol. 34, issue 3, pp. 308-311. DOI: 10.1134/1.1187977.
16. Barsan N., Schweizer-Berberich M., Göpel W. Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report, Fresenius' Journal of Analytical Chemistry, 1999, vol. 365, issue 4, pp. 287-304. DOI: 10.1007/s002160051490.

⇐ Prevoius journal article | Content | Next journal article ⇒