Formation pattern of fractal relief for nanosized molybdenum films
V.A. Anofriev1, A.S. Antonov1, D.V. Ivanov1, E.M. Semenova1, A.I. Ivanova1, S.A. Tretiakov1, M.S. Afanasiev2,3, N.Yu. Sdobnyakov1
1 Tver State University
2 MIREA - Russian Technological University
3 Fryazino Branch of V.A. Kotelnikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences
DOI: 10.26456/pcascnn/2023.15.017
Original article
Abstract: Some patterns of formation of the fractal relief of nanosized molybdenum films on the mica surface are considered using the atomic force microscopy. The tools and techniques for postprocessing and analyzing 2D images acquired through this specific research methodology have been thoroughly investigated. The significance of the contributions of errors and uncertainties to the final outcome of the acquired data is discussed. Additionally, a threshold detection method was applied to analyze the fractal dimension, allowing for the identification of areas of interest and exclusion of noise components, as well as regions not having scientific significance. The fractal dimension of the obtained agglomerates was determined at various scales, ranging from 0,5 to 3 µm. The next value Dc = 2,19 and Dc = 2,45 were obtained for the original images; Dc = 2,13 and Dc = 2,45, respectively, for the images processed using the threshold detection method. The obtained data provide prospects for further research and development of novel methods for synthesizing materials with specific properties.
Keywords: atomic force microscopy, magnetron sputtering, fractal dimension, molybdenum films, software
- Vitaly A. Anofriev – 1st year postgraduate student, General Physics Department, Tver State University
- Alexander S. Antonov – Ph. D., Researcher, General Physics Department, Tver State University
- Dmitry V. Ivanov, Tver State University
- Elena M. Semenova – Ph. D., Docent, Condensed Matter Physics Department, Tver State University
- Alexandra I. Ivanova – Ph. D., Docent, Applied Physics Department, Tver State University
- Sergey A. Tretiakov – Dr. Sc., Docent, Tver State University
- Mikhail S. Afanasiev – Dr. Sc., Docent, Leading Researcher, MIREA - Russian Technological University, Fryazino Branch of V.A. Kotelnikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences
- Nickolay Yu. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University
Reference:
Anofriev, V.A. Formation pattern of fractal relief for nanosized molybdenum films / V.A. Anofriev, A.S. Antonov, D.V. Ivanov, E.M. Semenova, A.I. Ivanova, S.A. Tretiakov, M.S. Afanasiev, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 17-31. DOI: 10.26456/pcascnn/2023.15.017. (In Russian).
Full article (in Russian): download PDF file
References:
1. Sdobnyakov N.Yu., Antonov A.S., Ivanov D.V. Morfologicheskie kharakteristiki i fraktal'nyj analiz metallicheskikh plenok na dielektricheskikh poverkhnostyakh: monografiya [Morphological characteristics and fractal analysis of metal films on dielectric substrates: monography], Tverб Tver State Unibersity Publ., 2019, 168 p. (In Russian).
2. Ivanov G.S., Brylkin Yu.V. Fraktal'naya geometricheskaya model' mikropoverkhnosti [Fractal geometric microsurface model], Geometriya i grafika [Geometry & Graphics], 2016, vol. 4, no. 1, pp. 4-11. DOI: 10.12737/18053. (In Russian).
3. Jiang Y., to Baben M., Lin Y. et al. Analyzing growth kinematics and fractal dimensions of molybdenum disulfide films, Nanotechnology, 2021, vol. 32, no. 24, art. № 245602, 13 p. DOI: 10.1088/1361-6528/abedf0.
4. Zavdoveev A., Beygelzimer Y., Varyukhiv V., Efros B. Influence of deformation on fractal dimension of deformed metals structure, arXiv:1204.6398 [Condensed Matter - Materials Science], 2012, 5 p. DOI: 10.48550/arXiv.1204.6398.
5. Durmaz S., Yildiz E., Uysal B.O., Pekcan O. 3D self-assemble formation of molybdenum disulfide (MoS2) - doped polyacrylamide (PAAm) composite hydrogelsdoped polyacrylamide (PAAm) composite hydrogels, Turkish Journal of Physics, 2022, vol. 46, no. 6, pp. 239-251. DOI: 10.55730/1300-0101.2730.
6. Guisbiers G., van Overschelde O., Wautelet M. et al. Fractal dimension, growth mode and residual stress of metal thin films, Journal of Physics D: Applied Physics, 2007, vol. 40, no. 4, pp. 1077-1079. DOI: 10.1088/0022-3727/40/4/024.
7. Anufriev L.P., Turtsevich A.S., Glukhmanchuk V.V. et al. Issledovanie vliyaniya uslovij formirovaniya na svojstva tonkikh plenok molibdena, nanesennykh magnetronnym raspyleniem [Investigation of the influence of formation conditions on the properties of molybdenum thin films deposited by magnetron sputtering], Elektronnaya obrabotka materialov [Electronic Processing of Materials], 2004, vol. 40, issue 3, pp. 70-74. (In Russian).
8. Barrera E., Gonzalez F., Rodrigez E., Alvares-Ramirez J. Correlation of optical properties with the fractal microstructure of black molybdenum coatings, Applied surface Science, 2010, vol. 256, issue 6, pp. 1756-1763. DOI: 10.1016/j.apsusc.2009.09.108.
9. Image Analysis P9. Rukovodstvo pol'zovatelya [Image Analysis P9. User guide], Moscow, NT-MDT SI Publ., 2019, 582 p. (In Russian).
10. Sdobnyakov N.Yu., Anofriev V.A., Nizenko A.V., Antonov A.S., Ivanov D.V., Kuz’min N.B. FractalSurface 2.0: programma dlya analiza poverkhnosti na nanourovne [FractalSurface 2.0: software for surface analysis at nanoscale]. Certificate RF, no. 2023614856, 2023. (In Russian).
11. DigitalSurf. Available at: www.url: https://www.digitalsurf.com (accessed 15.08.2023).
12. Gwyddion – Free SPM (AFM, SNOM/NSOM, STM, MFM, …) data analysis software. Available at: www.url: http://gwyddion.net (accessed 15.09.2023).
13. Strugailo V.V. Obzor metodov fil'tratsii i segmentatsii tsifrovykh izobrazhenij [Review of methods of filtering and segmentation of digital images], Nauka i obrazovanie [Science and Education], 2012, no. 5, pp. 270-280. DOI: 10.7463/0512.0411847. (In Russian).
14. Denisov A.V., Pershina M.Y., Gornostaev D.A. K voprosu o povtoryaemosti rezul'tatov izmerenij v zondovoj skaniruyushchej mikroskopii [Toward the repeatability of measurements in probe scanning microscopy], Nanotekhnika [Nanotechnology], 2010, no. 2 (22), pp. 100-101. (In Russian)
15. Pushkin M.A. Fraktal'naya struktura i elektronnye svojstva nanoklasterov metallov sformirovannykh pri vysokikh skorostyakh osazhdeniya [Fractal structure and electronic properties of metal nanoclusters formed at high deposition rates], Cand. phys.-math. sci. diss., Moscow, Moscow Engineering Physics Institute Publ., 2003, 161 p. (In Russian).
16. Arutyunov P.A., Tolstikhina A.L., Demidov V.N. Sistema parametrov dlya analiza sherokhovatosti i mikrorel'efa materialov v skaniruyushchej zondovoj mikroskopii [Parameter system for the analysis of roughness and microrelief of materials in scanning probe microscopy], Zavodskaya laboratoriya. Diagnostika materialov [Industrial laboratory. Diagnostics of materials], 1998, vol. 65, no. 9, pp. 27-37. (In Russian).
17. Nikolaidis N.S., Nikolaidis I.N. The box-merging implementation of the box-counting algorithm, Journal of the Mechanical Behavior of Materials, 2016, vol. 25, issue 1986, pp. 61-67. DOI: 10.1515/jmbm-2016-0006.
18. Davies O. Application of femtosecond lasers in confocal and scanning tunneling microscopy, Doctor of Philosophy thesis, Birmingham, The University of Birmingham, 2010, 236 p.