Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Graphite oxide: peculiarities of investigation of this material by physical methods

N.V. Alemasova1, D.I. Bugorskaya1, V.V. Burkhovetskii2, G.K. Volkova2, V.A. Glazunova2, M.Yu. Zelenskii1, M.V. Savoskin1

1 L.M. Litvinenko Institute of Physical Organic and Coal Chemistry
2 Galkin Donetsk Institute for Physics and Engineering

DOI: 10.26456/pcascnn/2023.15.008

Original article

Abstract: It is shown by physical methods that the preliminary preparation of samples affects the structure and properties of graphite oxide and partially reduced graphite oxide. The graphite oxide drying technique as the last synthesis stage determines its morphology and structural properties. At drying by sublimation method, the state of graphite oxide in aqueous suspension before the beginning of the process of self-ordering of its sheets is fixed, the data of X-ray diffraction analysis testifies its X-ray amorphous state, the dried graphite oxide appearance is a light yellow powder. Drying of graphite oxide aqueous suspensions at temperatures above room temperature is accompanied by the ordering of the graphite oxide structure under the action of the surface tension and Van der Waals orces with the dark brown film formation. It is shown by scanning and transmission microscopy methods that the method of separation of partially reduced graphite oxide from glass substrates, on which the product is dried, can lead to the formation of wrinkled or roll-shaped structures. When graphite oxide is examined by transmission electron microscopy, even a short exposure to ultrasound (used in the conventional method of depositing the material on a copper grid prior to examination) results in wrinkling and partial curling of the edges of graphite oxide nanoparticles. Mechanical grinding of graphite oxide leads to disordered graphite oxide structure and to the interplanar spacing increase.

Keywords: graphite oxide, structure, surface morphology, scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis

  • Natalia V. Alemasova – Ph. D., Senior Researcher, L.M. Litvinenko Institute of Physical Organic and Coal Chemistry
  • Daria I. Bugorskaya – Junior Researcher, L.M. Litvinenko Institute of Physical Organic and Coal Chemistry
  • Valeriy V. Burkhovetskii – Researcher, Galkin Donetsk Institute for Physics and Engineering
  • Galina K. Volkova – Researcher, Galkin Donetsk Institute for Physics and Engineering
  • Valentina A. Glazunova – Researcher, Galkin Donetsk Institute for Physics and Engineering
  • Michael Yu. Zelenskii – Engineer, L.M. Litvinenko Institute of Physical Organic and Coal Chemistry
  • Michael V. Savoskin – Ph. D., Senior Researcher, L.M. Litvinenko Institute of Physical Organic and Coal Chemistry

Reference:

Alemasova, N.V. Graphite oxide: peculiarities of investigation of this material by physical methods / N.V. Alemasova, D.I. Bugorskaya, V.V. Burkhovetskii, G.K. Volkova, V.A. Glazunova, M.Yu. Zelenskii, M.V. Savoskin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 8-16. DOI: 10.26456/pcascnn/2023.15.008. (In Russian).

Full article (in Russian): download PDF file

References:

1. Jiříčková A., Jankovský O., Sofer Z., Sedmidubský D. Synthesis and applications of graphene oxide: rewiev, Materials, 2022, vol. 15, issue 3, pp. 920-941. DOI: 10.3390/ma15030920.
2. GOST ISO/TS 80004-3-2014. Nanotekhnologii. Chast' 3. Nanoob"ekty uglerodnye. Terminy i opredeleniya [Russian State Standard ISO/TS 80004-3-2014. Nanotechnology. Part 3. Carbon nanobjects. Terms and definitions]. Moscow, Standartinform Publ., 2015, V, 9 p. (In Russian).
3. PNST 500-2020/ISO/TS 80004-13:2017. Nanotekhnologii. Chast' 13. Grafen i dvukhmernye (2D) materialy na ego osnove. Terminy i opredeleniya [Preliminary National Standard 500-2020/ISO/TS 80004-13:2017. Nanotechnology. Part 13. Graphene and two-dimensional (2D) materials based on it. Terms and definitions]. Moscow, Standartinform Publ., 2017, V, 25 p. (In Russian).
4. GOST ISO/TS 80004-6-2016. Nanotekhnologii. Chast' 6. Kharakteristiki nanoob"ektov i metody ikh opredeleniya. Terminy i opredeleniya [Russian State Standard ISO/TS 80004-6-2016. Nanotechnology. Part 6. Characteristics of nano-objects and methods for their determination. Terms and definitions]. Moscow, Standartinform Publ., 2016, VI, 28 p. (In Russian).
5. GOST 34684-2020. Nanomaterialy. Nanotrubki uglerodnye odnostennye. Tekhnicheskie trebovaniya i metody ispytanij [Russian State Standard 34684-2020. Nanomaterials. Single-walled carbon nanotubes. Technical requirements and test methods]. Moscow, Standartinform Publ., 2021, III, 11 p. (In Russian).
6. Alemasova N.V., Suhova S.R., Kravchenko V.V. et al. Vliyanie ul'trazvuka na strukturu vosstanovlennogo tiomochevinoj oksida grafita [Effect of ultrasound on the structure of thiourea-reduced graphite oxide ], Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 765-774. DOI: 10.26456/pcascnn/2020.12.765. (In Russian).
7. Papaianina O.S., Savoskin M.V., Vdovichenko A.N. et al. Graphite oxide – stages of formation and a new view on its structure, Theoretical and Experimental Chemistry, 2013, vol. 49, issue 2, pp. 88-95. DOI: 10.1002/abio.370040210.
8. Bannov A.G., Nikityonok O.V., Popov M.V., Maksimovskii E.A. Role of exposure time in graphite oxide synthesis, Materials Today: Proceedings, 2020, vol. 31, issue 3, pp. 499-501. DOI: 10.1016/j.matpr.2020.05.777.
9. Kigozi M., Koech R.K., Kingsley O. et al. Synthesis and characterization of graphene oxide from locally mined graphite flakes and its supercapacitor applications, Results in Materials, 2020, vol. 7, art. no. 100113, 12 p. DOI: 10.1016/j.rinma.2020.100113.
10. Vo T.K., Trinh T.P., Nguyen V.C., Kim J. Facile synthesis of graphite oxide/MIL-101(Cr) hybrid composites for enhanced adsorption performance towards industrial toxic dyes, Journal of Industrial and Engineering Chemistry, 2021, vol. 95, pp. 224-234. DOI: 10.1016/j.jiec.2020.12.023.
11. Kim D.W., Han H., Kim H. et al. Preparation of a graphene oxide/faujasite composite adsorbent, Microporous and Mesoporous Materials, 2018, vol. 268, pp. 243-250. DOI: 10.1016/j.micromeso.2018.04.034.
12. Gurzęda B., Florczak P., Kempiński M. et al. Synthesis of graphite oxide by electrochemical oxidation in aqueous perchloric acid, Carbon, 2016, vol. 100, pp. 540-545. DOI: 10.1016/J.CARBON.2016.01.044.

Content | Next journal article ⇒