Surface layer thickness and anisotropy of the surface energy of cubic ruthenium crystals
V.M. Yurov1, V.I. Goncharenko2, V.S. Oleshko2, S.A. Guchenko1
1 Research Center of the Karaganda University named after E.A. Buketov
2 Moscow Aviation Institute (National Research University)
DOI: 10.26456/pcascnn/2021.13.522
Original article
Abstract: The paper deals with the anisotropy of the surface layer and the anisotropy of the free surface energy of cubic ruthenium crystals. This consideration is based on an empirical model of atomically smooth crystals, the thickness of the surface layer of which depends on single fundamental parameter – the atomic volume of an element. Calculations of ruthenium crystals showed that the thickness of the surface layer of ruthenium crystals in all directions does not exceed d(I)<10 nm and they represent a nanostructure. Crystals of ruthenium aluminum, ruthenium hafnium, ruthenium titanium, ruthenium zirconium have σ>3 J/m2 in the (100) direction. We have considered the problem of gas diffusion in a nanometer ruthenium plate. In contrast to the classical problem, a logarithmic term appears in the resulting equation. This leads to divergence at the origin. Therefore, the boundary conditions must be specified not at x=0, but at x=d(0) – the de Broglie wavelength of electrons. Only in this case the classical diffusion equations are meaningful. It is also important that, according to the obtained equation, the diffusion of the nanoplate depends both on the material of the plate through the diffusion coefficient of the bulk sample and on the size factor. In the classical case, there is no such dependence. Various models have been proposed to describe phase transitions in nanostructures, among which we can mention the Landau mean field method, in which the order parameter is used. We will use Landau’s theory, replacing the temperature T with the coordinate h .
Keywords: surface layer, nanostructure, surface energy, atomic volume, size effect, ruthenium
- Viktor M. Yurov – Ph. D., Docent, Director of the Research Center «Ion-plasma Technologies and Modern Instrument-making», Karaganda University named after Е.A. Buketov
- Vladimir I. Goncharenko – Dr. Sc., Professor, Director of the Military Institute, Moscow Aviation Institute (National Research University)
- Vladimir S. Oleshko – Ph. D., Professor of the Department of Aircraft, Moscow Aviation Institute (National Research University)
- Sergey A. Guchenko – 3rd year postgraduate student, Research Center of the Karaganda University named after E.A. Buketov
Reference:
Yurov, V.M. Surface layer thickness and anisotropy of the surface energy of cubic ruthenium crystals / V.M. Yurov, V.I. Goncharenko, V.S. Oleshko, S.A. Guchenko // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 522-533. DOI: 10.26456/pcascnn/2021.13.522. (In Russian).
Full article (in Russian): download PDF file
References:
1. Yurov V.M., Guchenko S.A., Laurinas V.Ch. Tolshchina poverkhnostnogo sloya, poverkhnostnaya energiya i atomnyj ob"em elementa [Thickness of the surface layer, surface energy and atomic volume of the element], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2018, issue 10, pp. 691-699. DOI: 10.26456/pcascnn/2018.10.691. (In Russian).
2. Yurov V.M. Tolshchina poverkhnostnogo sloya atomarno-gladkikh kristallov [Thickness of the surface layer of atomic-smooth crystals], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 389-397. DOI: 10.26456/pcascnn/2019.11.389. (In Russian).
3. Belyaev A.V. Technological problems of platinum metals in nuclear fuel waste disposal, Journal of Structural Chemistry, 2003, vol. 44, issue 1, pp. 39-47. DOI:10.1023/A:1024976829428.
4. Marinkovic N.S., Vukmirovic M.B., Adzic R.R. Some recent studies in ruthenium electrochemistry and electrocatalysis, Modern Aspects of Electrochemistry. Modern Aspects of Electrochemistry, vol. 42, ed. by C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco. New York, Springer, 2008, pp. 1-52. DOI: 10.1007/978-0-387-49489-0_1.
5. Shebzukhova I.G., Aref'eva L.P. Otsenka polyarizatsionnoj i dispersionnoj popravok k poverkhnostnoj energii granej metallicheskikh kristallov [Estimation of the polarization and dispersion corrections to the surface energy of the faces of metal crystals], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 319-325. DOI: 10.26456/pcascnn/2020.12.319. (In Russian).
6. Bokarev V.P., Krasnikov G.Ya. Anizotropiya fiziko-khimicheskikh svojstv monokristallicheskikh poverkhnostej [The anisotropy of the physical and chemical properties of the single-crystal surfaces], Elektronnaya tekhnika. Seriya 3. Mikroelektronika [Electronic Engineering. Series 3. Microelectronics], 2016, no. 4 (164), pp. 25-30. (In Russian).
7. Bokarev V.P. Razvitie fiziko-khimicheskikh printsipov otsenki vliyaniya poverkhnostnoj energii na svojstva materialov i protsessy dlya tekhnologii mikroelektroniki. Diss. dokt. tekh. nauk [Development of physicochemical principles for assessing the effect of surface energy on the properties of materials and processes for microelectronic technology. Dr. tech. sci. diss.]. Moscow, JSC «Research Institute of Molecular Electronics», 2020, 299 p. (In Russian).
8. Arutyunov K.Yu. Kvantovye razmernye effekty v metallicheskikh nanostrukturakh [Quantum size effects in metallic nanostructures], Doklady Akademii nauk vysshej shkoly Rossijskoj Federatsii [Proceedings of the Russian Higher School Academy of Sciences], 2015, no. 3 (28), pp. 7-16. DOI: 10.17212 / 1727-2769-2015-3-7- 16. (In Russian).
9. Mamonova M.V., Prudnikov V.V., Prudnikov N.A. Fizika poverhnosti. Teoreticheskie modeli i eksperimentalnye metody [Surface physics. Theoretical models and experimental methods]. Moscow, Fizmatlit Publ., 2011, 400 p. (In Russian).
10. Oura K., Lifshits V.G., Saranin A.A. et al. Vvedenie v fiziku poverkhnosti [Introduction to surface physics]. Moscow: Nauka Publ., 2006, 490 p. (In Russian).
11. Uvarov N.F., Boldyrev V.V. Size effects in chemistry of heterogeneous systems, Russian Chemical Reviews, 2001, vol. 70, issue 4, pp. 265-284. DOI: 10.1070/RC2001v070n04ABEH000638.
12. Gusev A.I. Nanomaterialy, nanostruktury, nanotehnologii [Nanomaterials, nanostructures, nanotechnologies]. Moscow, Fizmatlit Publ., 2009, 416 p. (In Russian).
13. Andrievsky R.A., Ragulya A.V. Nanostrukturnye materialy [Nanostructural materials]. Moscow, Publishing Center «Academy», 2005, 192 p. (In Russian).
14. Suzdalev I.P. Nanotekhnologiya: fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov [Nanotechnology: physical chemistry of nanoclusters, nanostructures and nanomaterials]. Moscow, KomKniga Publ., 2006, 592 p. (In Russian).
15. Kiselev V.F., Kozlov S.N., Zoteev A.V. Osnovy fiziki poverhnosti tverdogo tela [Fundamentals of solid surface physics], Moscow: Moscow University Publ., 1999, 284 p. (In Russian).
16. Krasnikov G.Ya., Bokarev V.P. Surface energy and crystal faceting of elemental semiconductors and other substances, Doklady Physical Chemistry, 2002, vol. 382, issue 1-3, pp. 14-17. DOI: 10.1023/A:1013981204858.
17. Gleiter H. Nanostructured materials: basic concepts and microstructure, Acta Materialia, 2000, vol. 48, issue 1, pp. 1-29. DOI: 10.1016/S1359-6454(99)00285-2.
18. Desiraju G.R. Designing organic crystals, Progress in Solid State Chemistry, 1987, vol. 17, issue 4, pp. 295- 353. DOI: 10.1016/0079-6786(87)90005-7.
19. Taniguchi N. On the basic concept of «nano-technology», Proceedings of the International Conference on Production Engineering, part II, Tokyo, August, 26-29, 1974. Tokyo: Japan Society of Precision Engineering, 1974, pp. 18-23.
20. Pokropivny V.V., Skorokhod V.V. New dimensionality classifications of nanostructures, Physica E: Low- dimensional Systems and Nanostructures, 2008, vol. 40, issue 7, pp. 2521-2525. DOI: 10.1016/j.physe.2007.11.023.
21. Korotkevich S.V., Sviridova V.V. Strukturno-masshtabnye urovni deformatsii poverkhnostnogo sloya nikelya [Structural-scale levels of deformation of the surface layer of nickel], Problemy fiziki, matematiki i tekhniki [Problems of physics, mathematics and technics], 2020, no. (43), pp. 17-22. (In Russian)
22. Sdobnyakov N.Yu., Sokolov D.N., Samsonov V.M., Komarov P.V. Gupta multiparticle potential study of the hysteresis of the melting and solidification of gold nanoclusters, Russian Metallurgy (Metally), 2012, no. 3, pp. 209-214. DOI: 10.1134/S0036029512030111.
23. Skripov V.P., Koverda V.P. Gomogennoe zarozhdenie kristallov v zhidkostyakh i amorfnykh sloyakh [Homogeneous nucleation of crystals in liquids and amorphous layers], Problemy kristallografii: K stoletiyu so dnya rozhdeniya akademika A.V. Shubnikova [Problems of crystallography: On the centenary of the birth of Academician A.V. Shubnikov]. Moscow, Nauka Publ., 1987, pp. 232-246. (In Russian).
24. Mukhin V.S., Smyslov A.M. Inzheneriya poverkhnosti detalej mashin [Engineering of surface of machine components], Vestnik UGATU [Vestnik USATU], 2009, vol. 12, no. 4 (33), pp. 106-112. (In Russian).
25. Sergeev G.B. Nanokhimiya [Nanochemistry], Moscow, Moscow State University Publ., 2003, 288 p. (In Russian).
26. Yurov V.M. Mekhanicheskaya prochnost' metallicheskikh nanostruktur [Mechanical strength of metal nanostructures], Vestnik KarGU [Bulletin of the Karaganda university. Physics], 2013, no. 3 (71), pp. 56-61. (In Russian).
27. Maritan A., Langie G., Indekeu J.O. Derivation of Landau theories and lattice mean-field theories for surface and wetting phenomena, from semi-infinite Ising models, Physica A: Statistical Mechanics and its Applications, 1991, vol. 170, issue 2, pp. 326-354. DOI: 10.1016/0378-4371(91)90049-I.
28. Gafner Y.Y., Gafner S.L., Zamulin I.S., Redel L.V., Baidyshev V.S. Analysis of the heat capacity of nanoclusters of fcc metals on the example of Al, Ni, Cu, Pd and Au , The Physics of Metals and Metallography, 2015, vol. 116, issue 6, pp. 568-575. DOI: 10.1134/S0031918X15040055.