Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Theoretical and experimental study of macromolecular nanostructures based on heparin and lanthanoids

M.I. Skobin, M.A. Feofanova, T.V. Kryukov

Tver State University

DOI: 10.26456/pcascnn/2021.13.513

Original article

Abstract: Study of synthetic and natural materials suitable for the creation of nanocarriers and their modification will provide a breakthrough in the treatment of many diseases. Glycosaminoglycans (heparin and its derivatives) are a good choice for creating nanocarriers due to their unique biological and physicochemical properties. The complexation of Pr (III), Sm (III), Eu (III) with heparin anions was studied by potentiometric titration at 37 °C and an ionic strength of 0,15 M NaCl . Significant forms and chemical equilibria were determined using the NewDALSFEK program. In the pH range from 2,7 to 5 , a complex of the type  {[LnHep]}n, is formed, where Hep3-  is a monomeric unit of the heparin macromolecule. Data on the stability of nanocompositions were obtained:  lgβ [PrHep]=4,27±0,04,   lgβ [SmHep]=4,28±0,04,   lgβ [EuHep]=4,28±0,03.  The M06-HF method in combination with the CSDZ+* basic set was used to perform quantum chemical modeling of the complexes.

Keywords: heparin, lanthanides, stability constant, quantum chemical calculation, anticoagulants, Hartree-Fock method

  • Mikhail I. Skobin – Leading Engineer, Department of Inorganic and Analytical Chemistry, Tver State University
  • Mariana A. Feofanova – Ph. D., Docent, Head of the Department of Inorganic and Analytical Chemistry, Dean of the Chemical and Technology Department, Tver State University
  • Timofey V. Kryukov – Leading Engineer, Department of Inorganic and Analytical Chemistry, Tver State University

Reference:

Skobin, M.I. Theoretical and experimental study of macromolecular nanostructures based on heparin and lanthanoids / M.I. Skobin, M.A. Feofanova, T.V. Kryukov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. – Tver: TSU, 2021. — I. 13. — P. 513-521. DOI: 10.26456/pcascnn/2021.13.513. (In Russian).

Full article (in Russian): download PDF file

References:

1. Nanomaterialy. Nanotekhnologii. Nanosistemnaya tekhnika: mirovye dostizheniya za 2005 god [Nanomaterials. Nanotechnology. Nanosystem technology: world achievements in 2005], ed. by P.P. Mal'tsev. Moscow, Technosphere Publ., 2006, 149 p. (In Russian).
2. Shriver Z., Capila I., Venkataraman G., Sasisekhara R. Heparin and heparan sulfate: analyzing structure and microheterogeneity, Heparin - A Century of Progress. Handbook of Experimental Pharmacology, vol. 207, ed. by R. Lever, B. Mulloy, C.P. Page. Berlin, Heidelberg, Springer-Verlag, 2012, pp. 159-176. DOI: 10.1007/978-3- 642-23056-1_8.
3. Ul'yanov A.M., Lyapina L.A., Pastorova V.E., Smolina T.Yu. Antidiabetic and anticoagulant properties of heparin-glutamic acid complex, Biology Bulletin, 2004, vol. 31, issue 3, pp. 281-284.
4. Lyapina L.A., Pastorova V.E., Smolina T.Yu. et al/ Kompleks geparin–lizin i ego protivosvertyvayushchie svojstva [Heparin–lysine complex and its anticoagulant properties], Tromboz, gemostaz i reologiya [Thrombosis, hemostasis and rheology], 2004, no. 1 (17), pp. 37-40. (In Russian).
5. Afratis N.A., Karamanou K., Piperigkou Z. et al. The role of heparins and nano-heparins as therapeutic tool in breast cancer, Glycoconjugate Journal, 2017, vol. 34, issue 3, pp. 299-307. DOI: 10.1007/s10719-016-9742-7.
6. Guo Y., Yan H. Preparation and characterization of heparin-stabilized gold nanoparticles, Journal of Carbohydrate Chemistry, 2008, vol. 27, issue 5, pp. 309-319. DOI: 10.1080/07328300802158752.
7. Nurunnabi M., Khatun Z., Moon W.C. et al. Heparin based nanoparticles for cancer targeting and noninvasive imaging, Quantitative Imaging in Medicine and Surgery, 2012, vol. 2, no. 3, pp. 219-226. DOI: 10.3978/j.issn.2223-4292.2012.09.01.
8. Kemp M.M., Kumar A., Mousa S. et al. Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycans having distinctive biological activities, Biomacromolecules, 2009, vol. 10, issue 3, pp. 589- 595. DOI: 10.1021/bm801266t.
9. Harter K., Levine M., Henderson S.O. Anticoagulation drug therapy: a review, The Western Journal of Emergency Medicine, 2015, vol.16, issue 1, pp. 11-17. DOI:10.5811/westjem.2014.12.22933.
10. Nikolaeva L.S., Semenov A.N., Khomutov A.E. Anticoagulant activity of heparin increased by interaction with terbium ions and complexation with adp, arginine, glycine, and proline: comparative analysis, Pharmaceutical Chemistry Journal, 2012, vol. 46, issue 2, pp. 75-81. DOI: 10.1007/s11094-012-0737-9.
11. Přibil R. Analytical applications of EDTA acid and related compounds, International Series of Monographs on Analytical Chemistry, vol. 52. Oxford, New York, Toronto, Sydney, Braunschweig, Pergamon Press Ltd., 1972, 368 p. DOI: 10.1016/C2013-0-02416-4.
12. Karpukhin L.E., Feofanova M.A., Nikolaeva L.S. et al. Complexation of magnesium and calcium ions with heparin, Russian Journal of Inorganic Chemistry, 2006, vol. 51, issue 6, pp. 908-914. DOI: 10.1134/S0036023606060106.
13. Nikolaeva L.S., Semenov A.N., Mamontov M.N. et al. Calculations of chemical equilibria in Tb(NO3)3–H2O, Tb(NO3)3–heparin–H2O, CaCl2–Tb(NO3)3 heparin–H2O systems in physiological saline solution, Russian Journal of Inorganic Chemistry, 2008, vol. 53, issue 5, P. 825-830. DOI: 10.1134/S0036023608050252.
14. Rare earth coordination chemistry, ed. by C. Huang. Singapore, John Wiley & Sons (Asia) Pte. Ltd, 2010, 575 p. DOI: 10.1002/9780470824870.
15. Kuzmina S.I., Semenov A.N., Feofanova M.A. et al. Kompleksoobrazovanie vysokomolekulyarnogo geparina s kationami La (III), Pr (III) i Nd (III) [Complexation of high molecular weight heparin with La (III), Pr (III) and Nd (III) cations], Vestnik Tverskogo gosudarstvennogo universiteta. Seriya: Biologiya i ekologiya [Tver State University Bulletin. Series: Biology and Ecology], 2009, issue 15, pp. 82-87. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒