Study of the microstructure and composition of tin dioxide layers modified by silver nanoparticles
Z.V. Shomakhov1, S.S. Nalimova2, R.M. Kalmykov1, K. Aubekerov2, V.A. Moshnikov2
1 Kabardino-Balkarian State University
2 Saint Petersburg Electrotechnical University «LETI»
DOI: 10.26456/pcascnn/2021.13.447
Original article
Abstract: Tin dioxide layers were synthesized by hydrothermal method from an aqueous solution of SnF2 . Silver nanoparticles were deposited on the surface of the obtained layers by the photoreduction method. The surface morphology of the samples was studied by atomic force microscopy. The size of the silver nanoparticles depends on the concentration of the AgNO3 solution used for the photoreduction reaction. When synthesized from 0,02 M solution with a concentration of, the size of the nanoparticles varies from 10 to 100 nm, when the concentration of the solution is doubled, the size of the nanoparticles is about 100 nm. The surface composition of the layers before and after the deposition of silver nanoparticles was studied using the X-ray photoelectron spectroscopy. It was shown that a layer of the tin dioxide is formed without external inclusions, and metallic silver is deposited. The chemical shift of the peaks of tin and oxygen after the deposition of silver nanoparticles indicates the exchange of electrons between tin and silver. The synthesized layers are of interest for application in the field of semiconductor adsorption gas sensors.
Keywords: tin dioxide, silver nanoparticles, gas sensors, atomic force microscopy, X-ray photoelectron spectroscopy
- Zamir V. Shomakhov – Ph. D., Docent, Electronics and Digital Information Technologies Department, Kabardino-Balkarian State University
- Svetlana S. Nalimova – Ph. D., Docent, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»
- Rustam M. Kalmykov – Ph. D., Docent, Electronics and Digital Information Technologies Department, Kabardino-Balkarian State University
- Kirill . Aubekerov – graduate student, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»
- Vyacheslav A. Moshnikov – D. Sc., Professor, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»
Reference:
Shomakhov, Z.V. Study of the microstructure and composition of tin dioxide layers modified by silver nanoparticles / Z.V. Shomakhov, S.S. Nalimova, R.M. Kalmykov, K.. Aubekerov, V.A. Moshnikov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 447-456. DOI: 10.26456/pcascnn/2021.13.447. (In Russian).
Full article (in Russian): download PDF file
References:
1. Moshnikov V.A., Gracheva I.E., Kuznezov V.V. et al. Hierarchical nanostructured semiconductor porous materials for gas sensors, Journal of Non-Crystalline Solids, 2010, vol. 356, pp. 2020-2025. DOI: 10.1016/j.jnoncrysol.2010.06.030.
2. Bakin A.S., Bestaev M.V., Dimitrov D.Tz. et al. SnO2 based gas sensitive sensor, Thin Solid Films, 1997, vol. 296, issue 1-2, pp. 168-171. DOI: 10.1016/S0040-6090(96)09345-5.
3. Dimitrov D.Tz., Nikolaev N.K., Papazova K.I. et al. Investigation of the electrical and ethanol-vapour sensing properties of the junctions based on ZnO nanostructured thin film doped with copper, Applied Surface Science, 2017, vol. 392, pp. 95-108. DOI: 10.1016/j.apsusc.2016.08.049.
4. Nalimova S.S., Moshnikov V.A., Myakin S.V. Controlling surface functional composition and improving the gas-sensing properties of metal oxide sensors by electron beam processing, Glass Physics and Chemistry, 2016, vol. 42, issue 6, pp. 597-601. DOI: 10.1134/S1087659616060171.
5. Bobkov A.A., Mazing D.S., Ryabko A.A. et al. Study of gas-sensitive properties of zinc oxide nanorod array at room temperature, IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), 22-23 October 2018, St. Petersburg, Russia. New York, IEEE, 2018, pp. 219-221. DOI: 10.1109/EExPolytech.2018.8564407.
6. Nalimova S.S., Kononova I.E., Moshnikov V.A. et al. Investigation of the vapor-sensitive properties of zinc oxide layers by impedance spectroscopy, Bulgarian Chemical Communications, 2017, vol. 49, no. 1, pp. 121-126.
7. Krasteva L.K., Dimitrov D.Tz., Papazova K.I. et al. Synthesis and characterization of nanostructured zinc oxide layers for sensor applications, Semiconductors, 2013, vol. 47, issue 4, pp. 586-591. DOI: 10.1134/S1063782613040155.
8. Wang M., Zhu Y., Meng D., Wang K., Wang C. A novel room temperature ethanol gas sensor based on 3D hierarchical flower-like TiO2 microstructures, Materials Letters, 2020, vol. 277, art. no. 128372, 4 p. DOI: 10.1016/j.matlet.2020.128372.
9. Adilakshmi G., Sivasankar Reddy A., Sreedhar Reddy P., Seshendra Reddy Ch. Electron beam evaporated nanostructure WO3 films for gas sensor application, Materials Science and Engineering B, 2021, vol. 273, art. no. 115421, 8 p. DOI: 10.1016/j.mseb.2021.115421.
10. Bhardwaj N., Mohapatra S. Structural, optical and gas sensing properties of Ag–SnO2 plasmonic nanocomposite thin films, Ceramics International, 2016, vol. 42, issue 15, pp. 17237-17242. DOI: 10.1016/j.ceramint.2016.08.017.
11. Karpova S.S., Moshnikov V.A., Mjakin S.V., Kolovangina E.S. Surface functional composition and sensor properties of ZnO , Fe2O3 , and ZnFe2O4 , Semiconductors, 2013, vol. 47, issue 3, pp. 392-395. DOI: 10.1134/S1063782613030123.
12. Chen X., Guo Z., Xu W.-H. et al. Templating synthesis of SnO2 nanotubes loaded with Ag2O nanoparticles and their enhanced gas sensing properties, Advanced Functional Materials, 2011, vol. 21, issue 11, pp. 2049- 2056. DOI: 10.1002/adfm.201002701.
13. Wu R.J., Lin D.J., Yu M.R., Chen M.H., Lai H.F. Ag@SnO2 core–shell material for use in fast-response ethanol sensor at room operating temperature, Sensors and Actuators B, 2013, vol. 178, pp. 185-191. DOI: 10.1016/j.snb.2012.12.052.
14. Yao Y., Ji F., Yin M. et al. Ag nanoparticle-sensitized WO3 hollow nanosphere for localized surface plasmon enhanced gas sensors, ACS Applied Materials & Interfaces, 2016, vol. 8, issue 28, pp. 18165-18172. DOI: 10.1021/acsami.6b04692.
15. Tsai Y.-T., Chang S.-J., Ji L.-W. et al. High sensitivity of NO gas sensors based on novel Ag -doped ZnO nanoflowers enhanced with a UV light-emitting diode, ACS Omega, 2018, vol. 3, issue10, pp. 13798-13807. DOI: 10.1021/acsomega.8b01882.
16. Zhang Q., Xie G., Xu M. et al. Visible light-assisted room temperature gas sensing with ZnO–Ag heterostructure nanoparticles, Sensors and Actuators B, 2018, vol. 259, pp. 269-281. DOI: 10.1016/j.snb.2017.12.052.
17. Babu B., Neelakanta Reddy I., Yoo K., Kim D., Shim J. Bandgap tuning and XPS study of SnO2 quantum dots, Materials Letters, 2018, vol. 221, pp. 211-215. DOI: 10.1016/j.matlet.2018.03.107.
18. Zhang Z., Shao C., Li X. et al. Electrospun nanofibers of Zn–SnO2 heterojunction with high photocatalytic activity, Journal of Physical Chemistry C, 2010, vol. 114, issue 17, pp. 7920-7925. DOI: 10.1021/jp100262q.
19. Ansari S., Khan M., Ansari M., Lee J., Cho M. Visible light-driven photocatalytic and photoelectrochemical studies of Ag–SnO2 nanocomposites synthesized using an electrochemically active biofilm, RSC Advances, 2014, vol. 4, issue 49, pp. 26013-26021. DOI: 10.1039/C4RA03448A.
20. Babu B., Cho M., Byon C., Shim J. One pot synthesis of Ag–SnO2 quantum dots for highly enhanced sunlight-driven photocatalytic activity, Journal of Alloys and Compounds, 2018, vol. 731, pp. 162-171. DOI: 10.1016/j.jallcom.2017.10.011.
21. Nalimova S.S., Shomakhov Z.V., Moshnikov V.A. et al. An X-ray photoelectron spectroscopy study of zinc stannate layer formation, Technical Physics, 2020, vol. 65, issue 7, pp. 1087-1090. DOI: 10.1134/s1063784220070142.
22. Nalimova S.S., Bobkov A.A., Ryabko A.A. et al. Study of surface chemical composition of oxide nanostructures by X-ray photoelectron spectroscopy, Journal of Physics: Conference Series, 2020, vol. 1658, art. no. 012034, 6 p. DOI: 10.1088/1742-6596/1658/1/012034.
23. Shomakhov Z.V., Nalimova S.S., Kalazhokov Z.Kh., Moshnikov V.A. Analiz izmeneniya sostava poverkhnosti pri obrazovanii nanostruktur stannata tsinka [Analysis of changes in the surface composition during formation of zinc stannate nanostructures], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue. 12, pp. 222-231. DOI: 10.26456/pcascnn/2020.12.222. (In Russian)
24. Karpova S.S., Moshnikov V.A., Maksimov A.I., Mjakin S.V., Kazantseva N.E. Study of the effect of the acid-base surface properties of ZnO , Fe2O3, and ZnFe2O4 oxides on their gas sensitivity to ethanol vapor, Semiconductors, 2013, vol. 47, issue 8, pp. 1026-1030. DOI: 10.1134/S1063782613080095.
25. Xing X., Xiao X., Wang L., Wang Y. Highly sensitive formaldehyde gas sensor based on hierarchically porous Ag -loaded ZnO heterojunction nanocomposites, Sensors and Actuators B, 2017, vol. 247, pp. 797-806. DOI: 10.1016/j.snb.2017.03.077.