Influence of polymorphic transformations on anisotropy of the surface energy and the work function of the electron of lithium
I.G. Shebzukhova1, L.P. Aref`eva2
1 Kabardino-Balkarian State University named after H.M. Berbekov
2 Don State Technical University
DOI: 10.26456/pcascnn/2021.13.439
Short communication
Abstract: On the basis of the electronic-statistical method, a relationship is obtained and the surface energy and the work function of the electron of the faces of lithium crystals are estimated, taking into account the dispersion, polarization, and oscillatory interactions of the atoms of the surface layer. It was assumed that the crystal lattice has no defects. The expressions for the corrections and an analytical relationship between the work function of the electron and the surface energy are modified taking into account the type of the crystal lattice and the orientation of the faces. The work function of the electron and the surface energy of smooth faces are calculated at the limiting temperatures of the existence of polymorphic lithium phases. The influence of polymorphic transformations and temperature on the anisotropy is established. The temperature coefficient of the work function of an electron in a defect-free crystal is positive and amounts to about 0,1–1 meV. The calculation results are in good agreement with the experimental data for polycrystals.
Keywords: work function of an electron, surface energy, lithium, polymorphism
- Irina G. Shebzukhova – Dr. Sc., Professor, Department of Theoretical and Experimental Physics, Kabardino-Balkarian State University named after H.M. Berbekov
- Ludmila P. Aref`eva – Ph. D., Docent, Department of Physical and Applied Material Science, Don State Technical University
Reference:
Shebzukhova, I.G. Influence of polymorphic transformations on anisotropy of the surface energy and the work function of the electron of lithium / I.G. Shebzukhova, L.P. Aref`eva // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 439-446. DOI: 10.26456/pcascnn/2021.13.439. (In Russian).
Full article (in Russian): download PDF file
References:
1. Morachevskii A.G., Demidov A.I Lithium-silicon alloys: phase diagram, electrochemical studies, thermodynamic properties, application in chemical power cells, Russian Journal of Applied Chemistry, 2015, vol. 88, issue 4, pp. 547-566. DOI: 10.1134/S1070427215040011.
2. Morachevskii A.G. Lithium–selenium and sodium–selenium systems: thermodynamic properties and prospects for use in chemical current sources, Russian Journal of Applied Chemistry, 2016, vol. 89, issue 7, pp. 1043-1053. DOI: 10.1134/S1070427216070028
3. Oglodkov M.S., Shchetinina N.D., Rudchenko A.S., Panteleev M.D. Napravleniya razvitiya perspektivnykh alyuminiy-litiyevykh splavov dlya aviatsionno-kosmicheskoy tekhniki (obzor) [Directions of the development of promising aluminum-lithium alloys for aerospace engineering (review)], Aviatsionnyye materialy i tekhnologii [Aviation materials and technologies], 2020, no. 1 (58), pp. 19-29. DOI: 10.18577/2071-9140-2020-0-1-19-29 (In Russian).
4. Alchagirov B.B., Afaunova L.K., Dyshekova F.F., Arkhestov R.K. Lithium electron work function: state of the art, Technical Physics 2015. vol. 60. issue 2. pp. 292-299. DOI: 10.1134/S1063784215020024.
5. Shebzuhova I.G., Aref'eva L.P., Otsenka polyarizatsionnoy i dispersionnoy popravok k poverkhnostnoy energii graney metallicheskikh kristallov [Estimation of the polarization and dispersion corrections to the surface energy of the faces of metal crystals], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 319-325. DOI: 10.26456/pcascnn/2020.12.319 (In Russian).
6. Aref'eva L.P., Shebzuhova I.G. Anizotropiya raboty vykhoda elektrona OCK modifikatsiy 4d– i 5d– metallov [Anisotropy of work function of bcc 4d and 5d metals], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2015, issue 7, pp. 52-58. (In Russian).
7. Aref'eva L.P., Shebzukhova I.G. Electron work function and surface energy of body-centered and face- centered cubic modifications of 4– and 5d– metals Physics of the Solid State, 2016, vol. 58. issue 7, pp. 1289-1294. DOI: 10.1134/S1063783416070040.
8. Shebzukhova I.G., Aref'eva L.P. Anisotropy of the surface energy and work function of IIB metals, Technical Physics, 2019, vol. 64, issue 2, pp. 274-277. DOI: 10.1134/S1063784219020208.
9. Pogosov V.V. More on the effect of vacancies on metal characteristics. Work function and surface energy, Physics of the Solid State, 2019, vol. 61, issue 2, pp. 84-89. DOI: 10.1134/S1063783419020197.
10. Alchagirov B.B., Afaunova L.K., Dyshekova F.F. et al. The density and surface tension of liquid lithium at melting temperature, High Temperature, 2009, vol. 47, issue 2, pp. 287-291. DOI: 10.1134/S0018151X09020205.
11. Alchagirov B.B., Afaunova L.Kh., Dyshekova F.F., Kegadueva Z.A., Archestov R.Kh Otsenka kriticheskikh temperatur shchelochnykh metallov na osnove utochnennykh dannykh o politermakh poverkhnostnogo natyazheniya [Estimation of critical temperatures of alkali metals based on refined data on surface tension polytherms], Vestnik akademii nauk Chechenskoy Respubliki [Bulletin of the Academy of Sciences of the Chechen Republic], 2012, issue 2, pp. 37-39. (In Russian).
12. Drits M.E., Zusman L.L. Splavy shchelochnykh i shchelochno-zemel'nykh metallov: spravochnik [Alloys of alkali and alkaline earth metals: a handbook]. Moskow, Metallurgy Publ., 1986, 248 p. (In Russian).