Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Formation of biomimetic apatite on calcium phosphate foam ceramics in standard and carbonate-free model solutions

V.K. Krut’ko, L.Yu. Maslova, O.N. Musskaya, A.I. Kulak

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

DOI: 10.26456/pcascnn/2023.15.982

Original article

Abstract: The biomimetic apatite was formed in the carbonate-free Simulated Body Fluid model solutions of standard composition on calcium phosphate foam ceramics, consisting of α/β-tricalcium phosphate and β-calcium pyrophosphate. The apatite phase composition was determined by the composition of Simulated Body Fluid solution used during soaking. The equilibrium shift in the model solution during the interaction of calcium phosphate foam ceramics with ions of the solution leads to the apatite precipitation in the aggregated particles form. The excess content of Hions in carbonatefree Simulated Body Fluid leads to pH sharp fluctuations and the inclusion of hydrated СaClH2POimpurity into apatite spherulites. An increase in the soaking time in Simulated Body Fluid model solutions to 21-28 days leads to coarsening of apatite spherulites to 5-6 µm. The foam ceramics surface morphology after soaking changes insignificantly with a slight decrease in the through porosity by 1-3% and two times increase in static strength due to the healing of microdefects in the foam ceramics structure.

Keywords: calcium phosphate foam ceramics, tricalcium phosphate, SBF (Simulated Body Fluid), biomimetic apatite, spherulites

  • Valentina K. Krut’ko – Ph. D., Assistant Professor, Head of the Laboratory of Photochemistry and Electrochemistry, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
  • Lyubov Yu. Maslova – Junior Researcher, Photochemistry and Electrochemistry Laboratory, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
  • Olga N. Musskaya – Ph. D., Assistant Professor, Leading Researcher, Photochemistry and Electrochemistry Laboratory, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
  • Anatoly I. Kulak – Academician, National Academy of Sciences of Belarus, D. Sc., Professor, Director, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Reference:

Krut’ko, V.K. Formation of biomimetic apatite on calcium phosphate foam ceramics in standard and carbonate-free model solutions / V.K. Krut’ko, L.Yu. Maslova, O.N. Musskaya, A.I. Kulak // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 982-991. DOI: 10.26456/pcascnn/2023.15.982. (In Russian).

Full article (in Russian): download PDF file

References:

1. Samavedi S., Whittington A.R., Goldstein A.S. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior, Acta Biomaterialia, 2013, vol. 9, issue 9, pp. 8037- 8045. DOI: 10.1016/j.actbio.2013.06.014.
2. Montufar E.B., Vojtova L., Celko L. et al. Calcium phosphate foams: potential scaffolds for bone tissue modeling in three dimension, 3D Cell Culture. Methods in Molecular Biology, New York, Humana Press, 2017, vol. 1612, pp. 79-94. DOI: 10.1007/978-1-4939-7021-6_6.
3. Krut’ko V.K., Maslova L.Yu., Musskaya O.N. et al. Calcium phosphate ceramic foam obtained by firing a hydroxyapatite–monocalcium phosphate monohydrate powder mixture, Glass and Ceramics, 2022, vol. 78, issue 11, pp. 476-480. DOI: 10.1007/s10717-022-00435-y.
4. Barba A., Diez-Escudero A., Maazouz Y. et al. Osteoinduction by foamed and 3D-printed calcium phosphate scaffolds: effect of nanostructure and pore architecture, ACS Applied Materials & Interfaces, 2017, vol. 9, issue 48, pp. 41722-41736. DOI: 10.1021/acsami.7b14175.
5. Wang J., Zhu Y., Wang M. et al. Fabrication and preliminary biological evaluation of a highly porous biphasic calcium phosphate scaffold with nano-hydroxyapatite surface coating, Ceramics International, 2018, vol. 44, issue 2, pp. 1304-1311. DOI: 10.1016/j.ceramint.2017.08.053.
6. Hou X., Zhang L., Zhou Z. et al. Calcium phosphate-based biomaterials for bone repair, Journal of Functional Biomaterials, 2022, vol. 13, issue 9, pp. 187-226. DOI: 10.3390/jfb130401872.
7. Bejarano J., Caviedes P., Palza H. Sol–gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics, Biomedical Materials, 2015, vol. 10, issue 2, art. no. 025001, 13 p. DOI:10.1088/1748-6041/10/2/025001.
8. Dee P., You H.Y., Teoh S.H. et al. Bioinspired approaches to toughen calcium phosphate-based ceramics for bone repair, Journal of the Mechanical Behavior of Biomedical Materials, 2020, vol. 112, art. id 104078, 15 p. DOI: 10.1016/j.jmbbm.2020.104078.
9. Bouler J.M., Pilet P., Gauthier O. et al. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response, Acta Biomaterialia, 2017, vol. 53, pp. 1-12 DOI: 10.1016/j.actbio.2017.01.076.
10. Tavoni M., Dapporto M., Tampieri A. et al. Bioactive Calcium Phosphate-Based Composites for Bone Regeneration, Journal of Composites Science, 2021, vol. 5, issue 9, pp. 227-254. DOI: 10.3390/jcs5090227.
11. Hench L.L. Bioceramics, Journal of the American Ceramic Society, 1998, vol. 81, issue 7, pp. 1705-1728. DOI: 10.1111/j.1151-2916.1998.tb02540.x.
12. Kokubo T., Kushitani H., Sakka S. et al. Solutions able to reproduce in vivo surface-structure change in bioactive glass-ceramic A-W, Journal of Biomedical Materials Research, 1990, issue 24, pp. 721-734. DOI: 10.1002/jbm.820240607.
13. Dridi A., Zlaoui Riahi K., Somrani S. Mechanism of apatite formation on a poorly crystallized calcium phosphate in a simulated body fluid (SBF) at 37°C, Journal of Physics and Chemistry of Solids, 2021, vol. 156, art. no. 110122, 14 p. DOI: 10.1016/j.jpcs.2021.110122.
14. Takadama H., Hashimoto M., Mizuno M. et al. Round-robin test of SBF for in vitro measurement of apatiteforming ability of synthetic materials, Phosphorus Research Bulletin, 2004, vol. 17, pp. 119-125. DOI: 10.3363/prb1992.17.0_119.
15. Krut’ko V.K., Musskaya O.N., Kulak A.I., Safronova T.V. Vliyanie fazy trikal'tsiifosfata na prochnost'gidroksiapatitovoi penokeramiki v protsesse termicheskogo otzhiga [Influence of tricalcium phosphate phase on the strength of hydroxyapatite foam ceramics in the thermal annealing process, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, pp. 264-270. DOI: 10.26456/pcascnn/2017.9.264. (In Russian).
16. Krut’ko V.K., Musskaya O.N., Kulak A.I., Safronova T.V. Termicheskaya ehvolyutsiya kal'tsiifosfatnoi penokeramiki, poluchennoi na osnove gidroksiapatita i monokal'tsiifosfata monogidrata [Thermal evolution of calcium phosphate foam ceramics obtained on the basis of hydroxyapatite and monocalcium phosphate of monohydrate], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 615-623. DOI: 10.26456/pcascnn/2019.11.615. (In Russian).
17. Krut’ko V.K., Musskaya O.N., Kulak A.I. et al. Calcium phosphate foam ceramic based on hydroxyapatite–brushite powder mixture, Glass and Ceramics, 2019, vol. 76, issue 3, pp. 38-44. DOI: 10.1007/s10717-019-00145-y.
18. Krut’ko V.K., Maslova L.Yu., Musskaya O.N. et al. Bioactive calcium phosphate foam ceramics modified by biomimetic apatite, Proceedings of the National Academy of Sciences of Belarus, Chemical Series, 2022, vol. 58, issue 2, pp. 158-168. DOI: 10.29235/1561-8331-2022-58-2-158-168.
19. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url: https://www.icdd.com/pdf-2 (accessed 28.06.2023).
20. Oyane A., Onuma K., Ito A. et al. Clustering of calcium phosphate in SBF and in the system CaCl2-H3PO4-KCl-H2O, Bioceramics. Proceedings of the 12th International Symposium on Ceramics in Medicine, Nara City, Japan, 8-11 October 1999, 1999, issue 12, pp. 157-160. DOI: 10.1142/9789814291064_0038.
21. Muller L., Muller F.A. Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites, Acta Biomaterialia, 2006, vol. 2, issue 2, pp. 181-189. DOI: 10.1016/j.actbio.2005.11.001.
22. Liu Y,, Qu H. PAT for reactive crystallization process optimization for phosphorus recovery from sewage sludge, Computer Aided Chemical Engineering, 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering: Parts A, B and C, ed. by K.V. Gernaey, J.K. Huusom, R. Gani, 2015, vol. 37, pp. 1571-1575. DOI: 10.1016/B978-0-444-63577-8.50107-8.
23. Piga G., Amarante A., Makhoul C. et al. β-Tricalcium phosphate interferes with the assessment of crystallinity in burned skeletal remains, Journal of Spectroscopy, 2018, vol. 2018, art. no. 5954146, 10 p. DOI: 10.1155/2018/5954146.
24. Ryu H.-S., Youn H.-J., Hong K.S. et al. An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate, Biomaterials, 2002, vol. 23, issue 3, pp. 909-914. DOI: 10.1016/s0142-9612(01)00201-0.
25. Bucur A.I., Bucur R., Vlase T. et al. Thermal analysis and high-temperature X-ray diffraction of nanotricalcium phosphate crystallization, Journal of Thermal Analysis and Calorimetry, 2012, vol. 107, issue 1, pp. 249-255. DOI: 10.1007/s10973-011-1753-9.
26. Gaidash A.A., Krut’ko V.K., Musskaya O.N. et al. Structure and physicochemical properties of collagen gels treated with hyaluronic acid, Russian Journal of Applied Chemistry, 2022, vol. 95, issue 11, pp. 1701-1714. DOI: 10.1134/S1070427222110039.
27. Glazov I.E., Krut’ko V.K., Musskaya O.N., Kulak A.I. Low-temperature formation and identification of biphasic calcium carbonate phosphates, Russian Journal of Inorganic Chemistry, 2022, vol. 67, issue 11, pp. 1718-1730. DOI: 10.1134/S0036023622601313.

⇐ Prevoius journal article | Content | Next journal article ⇒