Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Surface topology of mixing entropy after two-pulse laser ablation of stainless steel

D.D. Tumarkina1, O.Ya. Butkovskii1, A.V. Bolachkov1, A.A. Burtsev2

1 Vladimir State University named after Alexander and Nikolay Stoletovs
2 Institute on Laser and Information Technologies of Russian Academy of Sciences – Branch of Federal Scientific Research Center «Crystallography and Photonics» of Russian Academy of Sciences

DOI: 10.26456/pcascnn/2023.15.869

Original article

Abstract: The paper presents experiments on crystallization from a melt with an analysis of the morphology of the emerging crystal structures, showing examples of the formation of dendritic crystals. Using energy dispersive X-ray analysis, studies of the microelement analysis of the areas of effect of two pulsed laser beams on the surface of stainless steel have been carried out for irradiation parameters corresponding to the appearance of dendritic structures in the area of effect. It is shown that in the dendritic regions concentrations of all the components of AISI 304 stainless steel are equalized. Estimation of the entropy of mixing from experimental data showed that in the area of surface dendrites or their accumulations, the surface entropy of mixing corresponded to its value for a high-entropy alloy. Based on the maximum entropy production principle, the phase transition temperature was calculated. Although dendritic crystallization should reduce the entropy of the system, experiments show that the entropy of the alloy increases. Preliminarily it can be concluded that this process is associated with a high oxygen content in the region of dendritic crystal formation after laser irradiation. The results presented in this work allow us to conclude that the formation of structures with complex morphology occurs after thermal oxidative ablation.

Keywords: two-pulse laser ablation, dendritic crystals, high-entropy alloys, entropy of mixing, entropy conductivity

  • Daria D. Tumarkina – 4th year postgraduate student, Department of Physics and Applied Mathematics, Institute of Applied Mathematics, Computer Science, Biotechnology and Nanotechnology, Vladimir State University named after Alexander and Nikolay Stoletovs
  • Oleg Ya. Butkovskii – Dr. Sc., Full Professor, Department of Physics and Applied Mathematics, Institute of Applied Mathematics, Computer Science, Biotechnology and Nanotechnology, Vladimir State University named after Alexander and Nikolay Stoletovs
  • Arkady V. Bolachkov – 3rd year postgraduate student, Department of Physics and Applied Mathematics, Institute of Applied Mathematics, Computer Science, Biotechnology and Nanotechnology, Vladimir State University named after Alexander and Nikolay Stoletovs
  • Anton A. Burtsev – Researcher, Laboratory of Nanophotonics and Nanoplasmonics, Institute on Laser and Information Technologies of Russian Academy of Sciences – Branch of Federal Scientific Research Center «Crystallography and Photonics» of Russian Academy of Sciences

Reference:

Tumarkina, D.D. Surface topology of mixing entropy after two-pulse laser ablation of stainless steel / D.D. Tumarkina, O.Ya. Butkovskii, A.V. Bolachkov, A.A. Burtsev // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 869-878. DOI: 10.26456/pcascnn/2023.15.869. (In Russian).

Full article (in Russian): download PDF file

References:

1. Handbook of laser welding, ed. by S. Katayama, Oxford, Cambridge, Philadelphia, New Delhi, Woodhead Publishing Limited, 2013, 654 p.
2. Toyserkani E., Khajepour A., Corbin S. Laser cladding, Boca Raton, London, New York, Washington: CRC Press, 2005, 263 p. DOI: 10.1201/9781420039177.
3. Zavestovskaya I.N. Laser nanostructuring of materials surfaces, Quantum Electronics, 2010, vol. 40, issue 11, pp. 942-954. DOI: 10.1070/QE2010v040n11ABEH014447.
4. Marukovich E.I., Stetsenko V.Yu., Stetsenko A.V. Nanostrukturnaya kristallizatsiya metallov [Nanostructural crystallization of metals], Lit'yo i metallurgiya [Foundry production and metallurgy], 2021, issue 2, pp. 23-26. DOI: 10.21122/1683‑6065‑2021‑2‑23‑26. (In Russian).
5. Kirkpatrick R.J. Crystal growth from the melt: a review, American Mineralogist: Journal of Earth and Planetary Materials, 1975, vol. 60, №. 9-10, pp. 798-814.
6. Winegard W.C. Introduction to the solidification of metals, London, Institute of Metals, 1964, 98 p.
7. Brylkin Yu.V., Kusov A.L. Sootnoshenie fraktal'noj razmernosti i razlichnoj sherokhovatosti dlya obraztsov medi [Relation between fractal dimension and surface roughness for the copper samples], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2013, issue 5, pp. 33-38. (In Russian).
8. Brylkin Yu.V., Kusov A.L. Issledovanie zavisimosti fizicheskikh svojstv poverkhnosti ot fraktal'noj razmernosti [Research of the dependence of surface physical properties from the fractal dimension], Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2015, issue 7, pp. 142-149. (In Russian).
9. Bavykin O.B., Vyacheslavova O.F. Vzaimosvyaz' svojstv poverkhnosti i ee fraktal'noj razmernosti [Relationship of surface properties and its fractal dimensions], Izvestiya Moskovskogo gosudarstvennogo tekhnicheskogo universiteta MAMI [Bulletin of Moscow State Technical University], 2013, vol. 2, no. 1 (15), pp. 14-18. (In Russian).
10. Andreeva L.V., Novoselova A.S., Lebedev-Stepanov P.V. et al. Crystallization of solutes from droplets, Technical Physics, 2007, vol. 52, issue 2, pp. 164-172. DOI: 10.1134/S1063784207020041.
11. Antonov A.S., Sdobnyakov N.Yu., Ivanov D.V. et al. Issledovanie fraktal'nykh svojstv nanorazmernykh plenok zolota, serebra i medi: atomno-silovaya i tunnel'naya mikroskopiya [Investigation of fractal properties of nanosized gold, silver and copper films: atomic force and tunnelling microscopy], Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], 2017, vol. 19, no. 3, pp. 473-486. (In Russian).
12. Sdobnyakov N.Yu., Antonov A.S., Ivanov D.V. Morfologicheskie kharakteristiki i fraktal'nyj analiz metallicheskikh plenok na dielektricheskikh poverkhnostyakh: monografiya [Morphological characteristics and fractal analysis of metal films on dielectric substrates: monography], Tver, Tver State University Publ., 2019, 168 p. (In Russian).
13. Novontny L., Hecht B. Principles of nano-optics, 2nd ed. Cambridge, Cambridge University Press, 2006, 539 p.
14. Klimov V.V. Nanoplasmonics, New York, Jenny Stanford Publishing, 2013, 598 p. DOI: 10.1201/b15442.
15. Krasnok A E., Maksymov I.S., Denisyuk A.I. et al. Optical nanoantennas, Physics-Uspekhi, 2013, vol. 56, issue 6, pp. 539-564. DOI: 10.3367/UFNe.0183.201306a.0561.
16. Kablov E.N., Bondarenko YU.A., Echin A.B. et. al. Razvitie protsessa napravlennoj kristallizatsii lopatok GTD iz zharoprochnykh i intermetallidnykh splavov s monokristallicheskoj strukturoj [Development of directional crystallization of gas-turbine engine blades made of heatproof and intermetalloid alloys with singlecrystal structure], Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. NE Baumana. Seriya «Mashinostroenie» [Bulletin of Bauman Moscow State Technical University. Series: Engineering Sciences], 2011, no. S2, pp. 20-25. (In Russian).
17. Antonov D.N., Burtsev A.A., Butkovskii O.Ya. Distribution of laser-induced dendrites on a steel surface, Technical Physics, 2016, vol. 61, issue 1, pp. 108-113. DOI: 10.1134/S1063784216010059
18. Burtsev A.A., Pritotsky E.M., Pritotskaya A.P. et al. Eksperimental'nye issledovaniya uslovij formirovaniya dendritnyh kristallov na poverhnosti metallov lazernym izlucheniem [Experimental research of dendritic crystals formation on metal surface by laser radiation], Nauchno-tekhnicheskij vestnik informacionnyh tekhnologij, mekhaniki i optiki [Scientific and Technical Journal of Information Technologies, Mechanics and Optics], 2019, vol. 19, no. 1, pp. 33-38. DOI: 10.17586/2226-1494-2019-19-1-33-38. (In Russian).
19. Panchenkova YU.A. Issledovanie faktorov, opredelyayushchikh dispersnost' dendritnykh struktur [Investigation of the factors determining the dispersity of dendritic structures in steels], Aktual'nye problemy aviatsii i kosmonavtiki [Actual problems of aviation and astronautics, 2012, vol. 1, no. 8, pp. 126-127. (In Russian).
20. Burtsev A.A., Butkovskii O.Ya., Sagitova A.V. et al Issledovanie protsessa obrazovaniya fraktal'nogo kristalla [Investigation of the process of fractal crystal formation], XII Vserossijskaya konferentsiya molodykh uchenykh «Nanoelektronika, nanofotonika i nelinejnaya fizika», Saratov, 5-7 sentyabrya 2017: tezisy dokladov [Book of Abstracts of XII Conference «Nanoelectronics, nanophotonics and nonlinear physics»], Saratov, «Tekhno-Dekor» Publ., 2017, pp. 22-24. (In Russian).
21. Ishina E.A., Kudryashova N.N., Maslova O.V. Neravnovesnaya kristallizatsiya. Kinetika kristallizatsii splavov [Non-equilibrium Crystallization. Alloy crystallization kinetics], Ekaterinburg: Ural Federal University Publ., 2021, 96 p. (In Russian).
22. Spivak L.V., Shchepina N.E. Polymorphic transformations in iron and zirconium, Technical Physics, 2020, vol. 65, issue 7, pp. 1100-1105. DOI: 10.1134/S1063784220070221.
23. Wang S. Atomic structure modeling of multi-principal-element alloys by the principle of maximum entropy. Entropy, 2013, vol. 15, issue 12, pp. 5536-5548. DOI: 10.3390/e15125536.
24. Burtsev A.A., Butkovskii O.Ya. Analiz kristallicheskikh struktur na poverkhnosti nerzhaveyushchej stali [Analysis of crystal structures on stainless steel surface], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 107-114. DOI: 10.26456/pcascnn/2019.11.107. (In Russian).
25. Volkov A.V., Kazanskiy N.L., Moiseev O.Y., Poletayev S.D. Thermal oxidative degradation of molybdenum films under laser ablation, Technical Physics, 2015, vol. 60, issue 2, pp. 265-269. DOI: 10.1134/S1063784215020255.
26. Nicolis G., Prigogine I. Exploring complexity: an introduction, New York, St. Martin's Press, 1989, 328 p.
27. Martyushev L.M., Seleznyov V.D. Printsip maksimal'nosti proizvodstva entropii v fizike i smezhnykh oblastyakh [The principle of maximum entropy production in physics and related fields], Ekaterinburg, Ural State Technical University Publ., 2006, 83 p. (In Russian).
28. Maysuradze M.V., Ryzhkov M.A., Kuklina A.A., Surnaeva O.A. Strukturoobrazovanie pri nepreryvnom okhlazhdenii eksperimental'nykh mashinostroitel'nykh stalej [Continuous cooling transformations of austenite in experimental engineering steels], XVII mezhdunarodnaya nauchno-tekhnicheskaya Ural'skaya shkola-seminar metallovedov-molodyh uchenyh. Part 1, [Book of Abstracts of XVII Ural School for Young Metal Scientists, vol. 1], Ekaterinburg, Ural University Publ., 2016. 2016, vol. 1, no. 17, pp. 131-135. (In Russian).
29. Khalenov O.S., Yurov V.M., Korovkin M.V. Termodinamicheskie aspekty elektricheskoj provodimosti kristallov i tverdykh rastvorov [Thermodynamic aspects of the electrical conductivity of the crystal and solid solutions], Fundamental'nye issledovaniya [Fundamental Research], 2014, issue 6-7, pp. 1384-1388. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒