Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


The features of application of eutectic melts based on indium and gallium

E.V. Maraeva, N.V. Permiakov, V.A. Moshnikov

Saint Petersburg Electrotechnical University «LETI»

DOI: 10.26456/pcascnn/2023.15.760

Review

Abstract: In a brief review, the main trends in the use at the present time of eutectic melts based on indium and gallium (EGaIn) are considered. Examples of the use of EGaIn in transistors, capacitors, electrodes, and probe systems (including those in four-probe techniques) are given. The main properties of EGaIn and the spreading of a drop of EGaIn melts are considered, and a detailed scheme of the point-contact four-probe method is given. The main issues discussed in the application of EGaIn in the field of obtaining liquid electrodes, including the formation of gallium oxides, the possibility is revealed of the influence of the spatial environment on the EGaIn droplet and manipulation of microdroplets,. It has been established that among the works of 2022-2023, a large segment is occupied by publications in the field of flexible electronics, intelligent robots, as well as wearable devices (for example, the creation of a metatissue with an antibacterial effect and the ability to be heated with a low energy consumption) and biomedical applications (the development of smart gloves for manipulating gestures, measuring the heart rate of insects).

Keywords: eutectic melts, EGaIn, liquid probes, flexible electronics

  • Evgeniya V. Maraeva – Ph.D., Docent, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»
  • Nikita V. Permiakov – Ph.D., Docent, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»
  • Vyacheslav A. Moshnikov – D.Sci, Professor, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»

Reference:

Maraeva, E.V. The features of application of eutectic melts based on indium and gallium / E.V. Maraeva, N.V. Permiakov, V.A. Moshnikov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 760-776. DOI: 10.26456/pcascnn/2023.15.760. (In Russian).

Full article (in Russian): download PDF file

References:

1. Zhao Z., Soni S., Lee T. et al. Smart eutectic gallium‐indium: from properties to applications Smart eutectic gallium‐indium: from properties to applications, Advanced Materials, 2023, vol. 35, art. no. 2203391, 46 p. DOI: 10.1002/adma.202203391.
2. Permiakov N.V. Ispol'zovanie zhidkikh zondov na osnove evtekticheskogo rastvora dlya issledovaniya provodyashchikh svojstv tonkikh plenok [The use of liquid probes based on an eutectic solution for studying the conducting properties of thin films], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 338-344. DOI: 10.26456/pcascnn/2021.13.338. (In Russian).
3. Permiakov N., Maraeva E., Bobkov A. et al. Investigation of the conductive properties of ZnO thin films using liquid probes and creation of a setup using liquid probes EGaIn for studing the conductive properties of thin films, Technologies, 2023, vol. 11, issue 1, pp. 26-36. DOI: 10.3390/technologies11010026.
4. Bobkov A.A., Borodzyulya V.F., Lamkin I.A. et al. Study of effects occurring on formation of fractal microstructures in layers of polycarbonate, polymethyl methacrylate, indium tin oxide, and zinc oxide, Glass Physics and Chemistry, 2018, vol. 44, issue 5, pp. 480-485. DOI: 10.1134/S1087659618050048.
5. Rothemund P., Bowers C.M., Suo Z., Whitesides G.M. Influence of the contact area on the current density across molecular tunneling junctions measured with EGAIN top-electrodes, Chemistry of Materials, 2018, vol. 30, issue 1, pp. 129-137. DOI: 10.1021/acs.chemmater.7b03384.
6. Chiechi R.C., Weiss E.A., Dickey M.D., Whitesides G.M. Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers, Angewandte Chemie International Edition, 2008, vol. 120, issue 1, pp. 142-144. DOI: 10.1002/anie.200703642.
7. Fassler A., Majidi C. 3D structures of liquid-phase GaIn alloy embedded in PDMS with freeze casting, Lab on a Chip, 2013, vol. 13, issue 22, pp. 4442-4450. DOI: 10.1039/C3LC50833A.
8. Fassler A., Majidi C. Soft-matter capacitors and inductors for hyperelastic strain sensing and stretchable electronics, Smart Materials and Structures, 2013, vol. 22, no. 5, art. no. 055230, 8 p. DOI: 10.1088/0964-1726/22/5/055023.
9. Tabatabai A., Fassler A., Usiak C., Majidi C. Liquid-phase gallium–indium alloy electronics with microcontact printing, Langmuir, 2013, vol. 29, issue 20, pp. 6194-6200. DOI: 10.1021/la401245d.
10. Qin D., Xia Y., Whitesides G.M. Soft lithography for micro-and nanoscale patterning, Nature Protocols, 2010, vol. 5, issue 3, pp. 491-497. DOI: 10.1038/nprot.2009.234.
11. Niskala J.R., Rice W.C., Bruce R.C. et al. Tunneling characteristics of Au–alkanedithiol–Au junctions formed via nanotransfer printing (nTP), Journal of the American Chemical Society, 2012, vol. 134, issue 29, pp. 12072-12082. DOI: 10.1021/ja302602b.
12. Li D., Li S., Lu W. et al. Rapidly measuring charge carrier mobility of organic semiconductor films upon a point-contact four-probes method, IEEE Journal of the Electron Devices Society, 2018, vol. 7, pp. 303-308. DOI: 10.1109/JEDS.2018.2872714.
13. Yoshimoto S., Takahashi K., Suzuki M. et al. Highly anisotropic mobility in solution processed TIPSpentacene film studied by independently driven four GaIn probes, Applied Physics Letters, 2017, vol. 111, issue 7, art. no. 073301, 4 p. DOI: 10.1063/1.4998949.
14. Bo G., Ren L., Xu X. et al. Recent progress on liquid metals and their applications, Advances in Physics: X, 2018, vol. 3, issue 1, pp. 412-442. DOI: 10.1080/23746149.2018.1446359.
15. Khan M.R., Eaker C.B., Bowden E.F., Dickey M.D. Giant and switchable surface activity of liquid metal via surface oxidation, Proceedings of the National Academy of Sciences, 2014, vol. 111, issue 39, pp. 14047-14051. DOI: 10.1080/23746149.2018.1446359.
16. Kuo P.H., Tzeng T.H., Huang Y.C. et al. Non-invasive Drosophila ECG recording by using eutectic galliumindium alloy electrode: a feasible tool for future research on the molecular mechanisms involved in cardiac arrhythmia, Plos One, 2014, vol. 9, issue 9, art. no. e104543, 8 p. DOI: 10.1371/journal.pone.0104543.
17. Allioux F.M., Ghasemian M.B., Xie W. et al. Applications of liquid metals in nanotechnology, Nanoscale Horizons, 2022, vol. 7, issue 2, pp. 141-167. DOI: 10.1039/d1nh00594d.
18. Soh E.J., Astier H.P., Daniel D. et al. AFM manipulation of EGaIn microdroplets to generate controlled, ondemand contacts on molecular self-assembled monolayers, ACS Nano, 2022, vol. 16, issue 9, pp. 14370-14378. DOI: 10.1021/acsnano.2c04667.
19. Amini S., Chen X., Chua J.Q.I. et al. Interplay between interfacial energy, contact mechanics, and capillary forces in EGaIn droplets, ACS Applied Materials & Interfaces, 2022, vol. 14, issue 24, pp. 28074-28084. DOI: 10.1021/acsami.2c04043.
20. Lashkova N.A., Maximov A.I., Moshnikov V.A. Sposob otsenki adgezionnoj prochnosti soedineniya p'ezoelektricheskikh nanokristallov s podlozhkoj [A method for estimation of the adhesive strength of the piezoelectric nanocrystals' connection to a substrate], Nano- i mikrosistemnaya tekhnika [Nano- and microsystem technology], 2019, vol. 21, issue 2, pp. 73-82. DOI: 10.17587/nmst.21.73-82. (In Russian).
21. Borodzyulya V.F., Moshnikov V.A., Permiakov N.V. Izmeritel'nyj zond i sposob ego izgotovleniya [Measuring probe and method for making the same]. Patent RF, no 2654385, 2018. (In Russian).
22. Lashkova N.A., Maximov A.I., Alexeev P.A., Moshnikov V.A. Sposob opredeleniya adgezionnoj prochnosti pokrytij k podlozhke [Method for determining the adhesive strength of coatings to a substrate]. Patent RF, no 2635335, 2016. (In Russian).
23. Kim J.H., Park Y.J., Kim S. et al. Effect of surrounding solvents on interfacial behavior of gallium-based liquid metal droplets, Materials, 2022, vol. 15, issue 3, pp. 706-715. DOI: 10.3390/ma15030706.
24. Yu L., Qi X., Liu Y. et al. Transportable, endurable, and recoverable liquid metal powders with mechanical sintering conductivity for flexible electronics and electromagnetic interference shielding, ACS Applied Materials & Interfaces, 2022, vol. 14, issue 42, pp. 48150-48160. DOI: 10.1021/acsami.2c14837.
25. Highly conductive, ultra-stretchable liquid metal composites engineered by magnetic field for robotic, wearable electronic, and medical applications. Available at: https://www.authorea.com/doi/full/10.22541/au.166177625.58898562 (accessed 11.08.2023).
26. Dong J., Peng Y., Nie X. et al. Hierarchically designed super-elastic metafabric for thermal-wet comfortable and antibacterial epidermal electrode, Advanced Functional Materials, 2022, vol. 32, issue 48, art. № 2209762, 12 p. DOI: 10.1002/adfm.202209762.
27. Tao Y., Han F., Shi C. et al. Liquid Metal-Based Flexible and Wearable Sensor for Functional Human–Machine Interface, Micromachines, 2022, vol. 13, issue. 9, pp. 1429-1443. DOI: 10.3390/mi13091429.
28. Zhao J., Li H., Bi X. et al. Rapidly reversible discoloration of liquid metal by contact or separation, Materials Chemistry and Physics, 2022, vol. 291, art. no. 126726, 8 p. DOI: 10.1016/j.matchemphys.2022.126726.

⇐ Prevoius journal article | Content | Next journal article ⇒