Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Ge adsorption on W(100): calculations

Yu..A. Kuznetsov, M.N. Lapushkin

Ioffe Institute

DOI: 10.26456/pcascnn/2023.15.465

Short communication

Abstract: For the first time, the adsorption of germanium atoms on the (100) face of tungsten was calculated using the density functional theory. The tungsten substrate was made as a 2D layer. The W2D layer was modeled by a W(100) 2×2×2 supercell. The calculation of the electron density of state and the adsorption energy of a Ge atom was carried out for three adsorption sites of the Ge atom: in the hollow position, in the bridge position between surface W atoms, and above the surface W atom: one Ge atom per 8 surface W atoms (most preferably adsorption of a germanium atom in hollow position). The adsorption energy is significant: 6,38 eV. The adsorption of Ge atoms leads to an insignificant reconstruction of the W surface: the maximum shift of W atoms does not exceed 0,15 Å. The valence band of the W(100) 2D layer is formed mainly by W 5d electrons, with an insignificant contribution of W 6s electrons. The Ge band is formed by Ge 4p electrons and Ge 4s electrons.

Keywords: adsorption, electronic structure, interface, germanium, tungsten

  • Yurij A. Kuznetsov – Researcher, Ioffe Institute
  • Mikhail N. Lapushkin – Ph. D., Docent, Senior Researcher, Ioffe Institute

Reference:

Kuznetsov, Yu..A. Ge adsorption on W(100): calculations / Yu..A. Kuznetsov, M.N. Lapushkin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 465-471. DOI: 10.26456/pcascnn/2023.15.465. (In Russian).

Full article (in Russian): download PDF file

References:

1. Monch W. On the physics of metal-semiconductor interfaces, Reports on Progress in Physics, 1990, vol. 53,issue 3, pp. 221- 278. DOI: 10.1088/0034-4885/53/3/001.
2. Lu Y.H., Jia Y., Zhang H.J. et al. Adsorption structure of germanium on the Ru(0001) surface, Applied Surface Science, 2007, vol. 254, issue 2, pp. 431-435. DOI: 10.1016/j.apsusc.2007.05.084.
3. Flores F., Tejedor C. On the formation of semiconductor interfaces, Journal of Physics C: Solid State Physics, 1987, vol. 20, no. 2, pp. 145-175. DOI: 10.1088/0022-3719/20/2/001.
4. Rim Y.S., Chen H., Zhu B. et al. Interface engineering of metal oxide semiconductors for biosensing applications, Advance Material Interfaces, 2017, vol. 4, issue 10, art. no. 1700020, 22 p. DOI: 10.1002/admi.201700020.
5. Muzychenko D.A., Oreshkin A.I., Oreshkin S.I. et al. The surface structures growth’s features caused by Ge adsorption on the Au(111) surface, JETP Letters, 2017, vol. 106, issue 4, pp. 217-222. DOI: 10.1134/S0021364017160111.
6. Sawaya S., Goniakowski J., Tréglia G. Ge deposition on Ag surfaces: dependence of the adsorption characteristics on the surface orientationб Physical Review B, 2000, vol. 61, issue 12, pp. 8469-8474. DOI: 10.1103/PhysRevB.61.8469.
7. Bosi M., Attolini G. Germanium: epitaxy and its applications, Progress in Crystal Growth and Characterization of Materials, 2010, vol. 56, issue 3-4, pp. 146-174. DOI: 10.1016/j.pcrysgrow.2010.09.002.
8. Ageev V.N., Kuznetsov Yu.A., Madey T.E. Resonances in electron stimulated desorption yield of cesium atoms from germanium monolayer-covered tungsten, Journal of Vacuum Science & Technology A, 2007, vol. 25, issue 4, pp. 731-735. DOI: 10.1116/1.2746043.
9. Casanova R. , Tsong T.T. Direct observation of atomic processes: silicon adatoms on tungsten surfaces, Thin Solid Films, 1982, vol. 93, issue 1-2, pp. 41-66 DOI: 10.1016/0040-6090(82)90090-6.
10. Hashimoto M., Matsushima T., Azuma K., Matsui T. Thermal desorption of silicon from polycrystalline tungsten surfaces, Surface Science Letters, 1984, vol. 137, issue 1, pp. L75-L78. DOI: 10.1016/0167-2584(84)90203-2.
11. Gall N.R. , Rut’kov E.V., Tontegode A.Ya., Usufov M.M. Coadsorption of C and Si atoms, Si and S atoms, and S and C atoms on a (100) Mo surface, Physics of the Solid State, 1996, vol. 38, issue 8, pp.1394-1397.
12. Ageev V.N., Afanas'eva E.Yu. Termodesorbtsiya kremniya s teksturirovannykh vol'framovykh lent [Thermal desorption of silicon from textured tungsten ribbons], Poverkhnost': Fizika, Khimiya, Mekhanika [Surface: Physics, Chemistry, Mechanics], 1987, no. 7, pp. 30-36. (In Russian).
13. Ageev V.N., Kuznetsov Yu.A., Madey T.E. Resonances in electron stimulated desorption yield of cesium atoms from germanium monolayer-covered tungsten, Journal of Vacuum Science & Technology A, 2007, vol. 25, issue 4, pp. 731-735. DOI: 10.1116/1.2746043.
14. Kuznetsov Yu.A., Lapushkin M.N. Raschety elektronnoj struktury 2D-sloev intermetallida NaAu [Calculation of electronic structure of 2D NaAu intermetallic layers], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 475-482. DOI: 10.26456/pcascnn/2021.13.475. (In Russian).
15. Kuznetsov Yu.A., Lapushkin M.N. Raschety elektronnoj struktury 2D-sloev intermetallida RbAu [Electronstimulated desorption of rubidium atoms adsorbed on the surface of gold-rubidium intermetallide], Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 450-457. DOI: 10.26456/pcascnn/2022.14.450. (In Russian).
16. Giannozz, P., Baroni S., Bonini N. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter, 2009, vol. 21, no. 39, art. no. 395502, 19 p. DOI: 10.1088/0953- 8984/21/39/395502.
17. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple, Physical Review Letters, 1996, vol. 77, issue 18, pp. 3865-3868. DOI: 10.1103/physrevlett.77.3865.
18. Troullier N., Martins J.L. Efficient pseudopotentials for plane-wave calculations, Physical Review B, 1991, vol. 43, issue 3, pp. 1993-2006. DOI: 10.1103/physrevb.43.1993.
19. Nishihara S. BURAI 1.3 A GUI of Quantum ESPRESSO. Available at: https://nisihara.wixsite.com/burai (accessed 16.06.2023).
20. Lu Y.H., Jia Y., Zhang H.J. et al. Adsorption structure of germanium on the Ru(0001) surface, Applied Surface Science, 2007, vol. 254, issue 2, pp. 431-435. DOI: 10.1016/j.apsusc.2007.05.084.
21. Wimmer E., Freeman A.J., Hiskes J.R., Karo A.M. All-electron local-density theory of alkali-metal bonding on transition-metal surfaces: Cs on W(001), Physical Review B, 1983, vol. 28, issue 6, pp. 3074-3091. DOI:10.1103/PhysRevB.28.3074.
22. Zhu Y., Zhang X.Y., Zhang S.H. et al Ge adsorption on Ag(111): A density-functional theory investigation, Solid State Sciences, 2012, vol. 14, issue 10, pp. 1480-1485. DOI: 10.1016/j.solidstatesciences.2012.08.021.

⇐ Prevoius journal article | Content | Next journal article ⇒