Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Scenarios of structure formation in four-component nanoparticles: atomistic simulation

A.Yu. Kolosov, K.G. Savina, S.A. Veresov, S.V. Serov, D.N. Sokolov, N.Yu. Sdobnyakov

Tver State University

DOI: 10.26456/pcascnn/2023.15.432

Original article

Abstract: Scenarios of structure formation in four-component nanoparticles are considered. The objects of study were Au-Cu-Pd-Pt nanoparticles containing N = 400, 800, 1200, 1600, 2000, 4000 atoms of the stoichiometric composition Au3CuPd12Pt4. Two alternative modeling methods were used: the molecular dynamics and the Monte Carlo. The interaction between atoms was described by the tight binding potential. The phase transition temperatures for the nanoparticles under study were determined. It has been established that the melting and crystallization temperatures depend both on the size of nanoparticles and on the rate of temperature change (by using the molecular dynamics method). The melting rate of nanoparticles has little effect on the melting temperature, while increasing the cooling rate significantly reduces the crystallization temperature and slows down the segregation processes. The process of coalescence of two four-component nanoparticles was modeled. During the process of coalescence, significant mixing of atoms of different types does not occur when using the Monte Carlo method, which leads to some stopping of the growth of the neck at the point of contact, in contrast to molecular dynamics method, where the growth of the neck occurs gradually.

Keywords: molecular dynamics method, Monte Carlo method, tight-binding potential, four-component nanoparticles, structure formation, melting and crystallization temperatures

  • Andrei Yu. Kolosov – Ph. D., Researcher, General Physics Department, Tver State University
  • Kseniya G. Savina – 1st year postgraduate student, General Physics Department, Tver State University
  • Sergey A. Veresov – 2nd year postgraduate student, General Physics Department, Tver State University
  • Sergei V. Serov – 1st year graduate student, General Physics Department, Tver State University
  • Denis N. Sokolov – Ph. D., Researcher, General Physics Department, Tver State University
  • Nickolay Yu. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University

Reference:

Kolosov, A.Yu. Scenarios of structure formation in four-component nanoparticles: atomistic simulation / A.Yu. Kolosov, K.G. Savina, S.A. Veresov, S.V. Serov, D.N. Sokolov, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 432-443. DOI: 10.26456/pcascnn/2023.15.432. (In Russian).

Full article (in Russian): download PDF file

References:

1. Lu X.-Z., Shao G.-F., Xu L.-Y. et al. Structural optimization and segregation behavior of quaternary alloy nanoparticles based on simulated annealing algorithm, Chinese Physics B, 2016, vol. 25, no. 5, art. no. 053601, 8 p. DOI: 10.1088/1674-1056/25/5/053601.
2. Myasnichenko V., Kirilov L., Mikhov R., Fidanova S., Sdobnyakov N. Simulated annealing method for metal nanoparticle structures optimization, Advanced Computing in Industrial Mathematics. BGSIAM 2017. Studies in Computational Intelligence, ed. by K. Georgiev, M. Todorov, I. Georgiev, 2019, vol. 793, pp. 277-289. DOI: 10.1007/978-3-319-97277-0_23.
3. Myasnichenko V., Sdobnyakov N., Kirilov L., Mikhov R., Fidanova S. Monte Carlo approach for modeling and optimization of one-dimensional bimetallic nanostructures, Lecture Notes in Computer Science. Conference paper: International Conference on Numerical Methods and Applications, 20-24 August 2018, Borovets, Bulgaria, 2019, vol. 11189, pp. 133-141. DOI: 10.1007/978-3-030-10692-8_15.
4. Samsonov V.M., Murav'ev S.D., Bazulev A.N. Surface characteristics, structure, and stability of nanosized particles, Russian Journal of Physical Chemistry A, 2000, vol. 74, issue 11, pp. 1791-1795.
5. Xu Y., Wang G., Qian P., Su Y. Element segregation and thermal stability of Ni–Rh nanoparticles, Journal of Solid State Chemistry, 2022, vol. 311, art. no 123096. DOI: 10.1016/j.jssc.2022.123096.
6. Sun M. Wang Z., Wang H. Chemically driven phase segregation of alloy nanoparticles: a versatile route to dual-plasmonic gold@copper chalcogenide heteronanostructures, Chemistry of Materials, 2022, vol. 34, issue 4, pp. 1965-1975. DOI: 10.1021/acs.chemmater.1c04451.
7. Wang Q., Zhu B., Tielens F. et al. Mapping surface segregation of single-atom Pt dispersed in M surfaces (M = Cu, Ag, Au, Ni, Pd, Co, Rh and Ir) under hydrogen pressure at various temperatures, Applied Surface Science, 2021, vol. 548, art. no. 149217, 10 p. DOI: 10.1016/j.apsusc.2021.149217.
8. Salem M., Cowan M.J., Mpourmpakis G. Predicting segregation energy in single atom alloys using physics and machine learning, ACS Omega, 2022, vol. 7, issue 5, pp. 4471-4481. DOI: 10.1021/acsomega.1c06337.
9. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
10. Paz Borbón L.O. Computational studies of transition metal nanoalloys. Doctoral Thesis accepted by University of Birmingham, United Kingdom. Berlin, Heidelberg, Springer-Verlag, 2011, 155 p. DOI: 10.1007/978-3-642-18012-5.
11. Bogdanov S., Samsonov V., Sdobnyakov N. et al. Molecular dynamics simulation of the formation of bimetallic core-shell nanostructures with binary Ni–Al nanoparticle quenching, Journal of Materials Science, 2022, vol. 57, issue 28, pp. 13467-13480. DOI: 10.1007/s10853-022-07476-2.
12. Myasnichenko V.S., Sdobnyakov N.Yu., Kolosov A.Yu. et al. Modelirovanie protsessov strukturoobrazovaniya v bimetallicheskikh nanosplavakh razlichnogo sostava [Modeling of processes of structure formation in bimetallic nanoalloys of different composition], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, pp. 323-329. DOI: 10.26456/pcascnn/2017.9.323. (In Russian).
13. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1-015012-7. DOI: 10.1088/0965-0393/18/1/015012.
14. Sdobnyakov N.Yu., Kolosov A.Yu., Bogdanov S.S. Modelirovanie protsessov koalestsentsii i spekaniya v mono- i bimetallicheskikh nanosistemakh: monografiya [Simulation of the processes of coalescence and sintering in mono- and bimetallic nanosystems: monograph]. Tver, Tver State University Publ., 2021, 168 p. DOI: 10.26456/skb.2021.168. (In Russian).
15. Veresov S.A., Savina K.G., Veselov A.D. et al. K voprosu izucheniya protsessov strukturoobrazovaniya v chetyrekhkomponentnykh nanochastitsakh [To the problem of investigating the processes of structure formation in four-component nanoparticles], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 371-382. DOI: 10.26456/pcascnn/2022.14.371.
16. Sokolov D.N., Sdobnyakov N.Yu., Kolosov A.Yu., Ershov P.M., Bogdanov S.S. Metropolis. Certificate RF, no. 2019661915, 2019. (In Russian).
17 Samsonov V.M., Talyzin I.V., Samsonov M.V. On the effect of heating and cooling rates on the melting and crystallization of metal nanoclusters, Technical Physics, 2016, vol. 61, issue 6, pp. 946-949. DOI: 10.1134/S1063784216060207.
18. Sdobnyakov N.Yu., Myasnichenko V.S., San C.-H., et al. Simulation of phase transformations in titanium nanoalloy at different cooling rates, Materials Chemistry and Physics, 2019, vol. 238, art. no 121895, 9 p. DOI: 10.1016/j.matchemphys.2019.121895.
19. Samsonov V.M., Sdobnyakov N.Yu., Myasnichenko V.S. et al. A Comparative analysis of the size dependence of the melting and crystallization temperatures in silver nanoparticles via the molecular dynamics and Monte-Carlo methods, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Technique, 2018, vol. 12, issue 6, pp. 1206-1209. DOI: 10.1134/S1027451018050671.
20. Sdobnyakov N.Yu., Sokolov D.N., Bazulev A.N. et al. Relation between the size dependences of the melting and crystallization temperatures of metallic nanoparticles, Russian Metallurgy (Metally), 2013, no. 2, pp. 100-105. DOI: 10.1134/S0036029513020110.

⇐ Prevoius journal article | Content | Next journal article ⇒