Conformation peculiarities of gemini surfactant monomers for 2D monolayer formation at the liquid/fluid interface
E.S. Kartashynska 1,2
1 L.M. Litvinenko Institute of Physical Organic and Coal Chemistry
2 Donetsk National Technical University
DOI: 10.26456/pcascnn/2023.15.412
Original article
Abstract: The present work is devoted to the consideration of gemini surfactant monomers with a nonionic hydrophilic part and a different structure of the spacer connecting the hydrocarbon chains. It is possible to single out two conditional conformations of monomers depending on the spacer type: with an «extended» and «compact» spacer in the case of a flexible etoxylated or hydrocarbon chain, and only with the «extended» rigid spacer in the case of aromatic ring in it. The length for all three types of spacers in the case of their «extended» conformation is approximately the same for the considered bis-surfactants and allows two hydrocarbon molecules to be vertically introduced into the resulting cavity. The «compact» conformation of flexible spacers ensures the implementation of intramolecular CH‧‧‧HC interactions between hydrocarbon chains, which are not carried out in monomers with «extended» one. The thermodynamic parameters of formation for the found monomer conformations are calculated. For gemini surfactant conformers, the formation of structures with a «compact» spacer is more advantageous according to the Gibbs energy due to the formation of intramolecular CH‧‧‧HC interactions between hydrophobic chains of the amphiphilic compound. Comparison of the contributions of intramolecular CH‧‧‧HC interactions to the formation enthalpy and entropy of bis-surfactants with an etoxylated bridge in a «compact» conformation reveals good agreement with the similar contributions of intermolecular ones for dioxyethylated alcohols. It shows the same nature of CH‧‧‧HC interactionns realizing both inside a molecule with two hydrocarbon chains and between two surfactant molecules with single hydrocarbon chain.
Keywords: gemini surfactants, monomer, enthalpy, absolute entropy, Gibbs energy of formation, CH‧‧‧HC interactions
- Elena S. Kartashynska – Dr. Sc., Senior Researcher of Supramolecular Chemistry Department, L.M. Litvinenko Institute of Physical Organic and Coal Chemistry, professor of the department of general, physical and organic chemistry Donetsk National Technical University
Reference:
Kartashynska, E.S. Conformation peculiarities of gemini surfactant monomers for 2D monolayer formation at the liquid/fluid interface / E.S. Kartashynska // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 412-423. DOI: 10.26456/pcascnn/2023.15.412. (In Russian).
Full article (in Russian): download PDF file
References:
1. Bunton C.A., Robinson L.B., Schaak J., Stam M.F. Catalysis of nucleophilic substitutions by micelles of dicationic detergents, Journal of Organic Chemistry, 1971, vol. 36, issue 16, pp. 2346-2350. DOI: 10.1021/jo00815a033.
2. Zana R. Dimeric and oligomeric surfactants behavior at interfaces and in aqueous solution: a review, Advances in Colloid Interface Science, 2002, vol. 97, issue 1-3, pp. 205-253. DOI: 10.1016/S0001-8686(01)00069-0.
3. Menger F.M., Littau C.A. Gemini surfactants: a new class of self-assembling molecules, Journal of American Chemical Society, 1993, vol. 115, issue 22, pp.10083-10090. DOI: 10.1021/ja00075a025.
4. Teghrani-Bagha A.R., Holmberg K. Solubilization of hydrophobic dyes in surfactant solutions, Materials, 2013, vol. 6, issue 2, pp. 580-608. DOI: 10.3390/ma6020580.
5. Jiang C., Ma J. De-inking of waste paper: flotation, Encyclopedia of Separation Science. Academic Press, 2000, pp. 2537-2544. DOI: 10.1016/B0-12-226770-2/05881-6.
6. Heakal F.E.-T., Deya M.A., Osman M.M., Nessim M.I., Elkholy A.E. Synthesis and assessment of new cationic gemini surfactants as inhibitors for carbon steel corrosion in oilfield water, RSC Advances, 2017, vol. 7, issue 75, pp. 47335-47352. DOI: 10.1039/C7RA07176K.
7. Zhong L., Jiao T., Liu M. Synthesis and assembly of gold nanoparticles in organized molecular films of gemini amphiphiles, Langmuir, 2008, vol. 24, issue 20, pp. 11677-11683. DOI: 10.1021/la802338f.
8. Song L.D., Rosen M.J. Surface properties micellization, and premicellar aggregation of gemini surfactants with rigid and flexible spacers, Langmuir, 1996, vol. 12, issue 5, pp. 1149-1153. DOI: 10.1021/la950508t.
9. Hussain S.M.S., Kamal M.S., Solling T. et al. Surface and thermal properties of synthesized cationic poly(ethylene oxide) gemini surfactants: the role of the spacer, RSC Advances, 2019, vol. 9, issue 52, pp. 30154-30163. DOI: 10.1039/C9RA06577F.
10. Wen Y., Ge X., Gao W. et al. Synthesis and aggregation properties of ethylene glycol ester-based cationic gemini surfactant, Colloid and Interface Science Communications, 2020, vol. 37, art. no. 100274, 8 p. DOI: 10.1016/j.colcom.2020.100274.
11. Sumida Y., Masuyama A., Oki T. et al. Pressure-area isotherms for double-chain amphiphiles bearing two hydroxyl groups derived from diepoxides, Langmuir, 1996, vol. 12, issue 16, pp. 3986-3990. DOI: 10.1021/la960268x.
12. Chen Q., Zhang D., Li R. et al. Effect of the spacer group on the behavior of the cationic gemini surfactant monolayer at the air/water interface, Thin Solid Films, 2008, vol. 516, issue 23, pp. 8782-8787. DOI: 10.1016/j.tsf.2008.06.082.
13. Cheng L., Jiang Z., Dong J. et al. Monolayers of novel gemini amphiphiles with phthalimide headgroups at the air/water interface: pH and alkyl chain length effects, Journal of Colloid and Interface Science, 2013, vol. 401, pp. 97-106. DOI: 10.1016/j.jcis.2013.03.023.
14. Vysotsky Yu.B., Kartashynska E.S., Belyaeva E.A. et al. Сomputational quantum chemistry applied to monolayer formation at gas/liquid interfaces, Computational methods for complex liquid-fluid interfaces, ed. by M. Karbaschi, R. Miller, M.T. Rahni. Boca Raton, CRC Press, 2015, chapter 10, pp. 199-249. DOI: 10.1201/b19337.
15. Stewart J.J.P. MOPAC 2000 V1.3 User`s Manual, Tokyo: Fujitsu Limited, 2000, 433 p.
16. Stewart J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements, Journal of Molecular Modeling, 2007, vol. 13, issue 12, pp. 1173-1213. DOI: 10.1007/s00894-007-0233-4
17. Stone A.J. The theory of intermolecular forces. Oxford, Clarendon Press, 1996, 264 p.
18. Csonka G.I., Ángyán J.C. The origin of the problems with the PM3 core repulsion function, Journal of Molecular Structure: THEOCHEM, 1997, vol. 393, issue 1-3, pp. 31-38. DOI: 10.1016/S0166-1280(96)04872-5.
19. Vysotsky Yu. B., Fomina E. S., Belyaeva E. A. et al. Temperature effect on the monolayer formation of substituted alkanes at the air/water interface: a quantum chemical approach, Journal of Physical Chemistry B, 2012, vol. 116, issue 30, pp. 8996-9006. DOI: 10.1021/jp303617n.
20. Vysotsky Yu. B., Fomina E. S., Belyaeva E. A. et al. Quantum chemical analysis of the thermodynamics of 2D cluster formation of aliphatic amides at the air/water interface, Journal of Physical Chemistry C, 2012, vol. 116, issue 50, pp. 26358-26376. DOI: 10.1021/jp308479x.
21. Vysotsky Yu. B., Shved A. A., Belyaeva E. A. et al. Quantum-chemical description of the thermodynamic characteristics of clusterization of melamine-type amphiphiles at the air/water interface, Journal of Physical Chemistry B, 2009, vol. 113, issue 40, pp. 13235-13248. DOI: 10.1021/jp904598k.