Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009

To the problem of application of nanoclusters Ag-Cu in plasmonics

S.L. Gafner

Katanov Khakass State University

DOI: 10.26456/pcascnn/2023.15.367

Original article

Abstract: The magnitude of the localized surface plasmon resonance (LSPR) in metal nanoparticles is determined by many factors. Thus, with an increase in their average linear size, the maximum position of the LSPR peak shifts towards long waves. However, the position of the LSPR maximum is affected to a greater extent by the material of the nanoparticles. Changing the average particle diameter fromD = 7 nm to D = 60 nm makes it possible to  vary the position of the LSPR maximum in the range of about 50 nm. However, with a smooth change in the composition of binary nanoparticles, it can already be varied within about 120 nm. Therefore, copper-silver alloy nanoparticles are of great practical interest due to the possibility of fine-tuning the plasmonic effects present in them by changing the composition, size, shape, and structure of the nanoparticles. Based on the results of the analysis of the available experimental data, it was concluded that it is possible to control the internal structure and shape of Ag-Cu nanoparticles in order to shift the plasmon resonance peak and enhance it.

Keywords: : nanoclusters, silver, copper, crystallization, structure, computer simulation, tight-binding

  • Svetlana L. Gafner – Dr. Sc., Docent, Professor of the Department of Mathematics, Physics and Information Technology, Katanov Khakass State University


Gafner, S.L. To the problem of application of nanoclusters Ag-Cu in plasmonics / S.L. Gafner // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 367-376. DOI: 10.26456/pcascnn/2023.15.367. (In Russian).

Full article (in Russian): download PDF file


1. Dubkov S.V., Savitskiy A.I., Trifonov A.Yu. SERS in red spectrum region through array of Ag–Cu composite nanoparticles formed by vacuum-thermal evaporation, Optical Materials: X, 2020, vol. 7, art. no. 100055. DOI: 10.1016/j.omx.2020.100055.
2. Ferrando R., Fortunelli A., Rossi G. Quantum effects on the structure of pure and binary metallic nanoclusters, Physical Review B, 2005, vol. 72, issue 8, рр. 085449-1-085449-9. DOI: 10.1103/PhysRevB.72.085449.
3. Lia Zh., Yanga X., Liua Ch., Wanga J., Li G. Effects of doping in 25-atom bimetallic nanocluster catalysts for carbon–carbon coupling reaction of iodoanisole and phenylacetylene, Progress in Natural Science: Materials International, 2016, vol. 26, issue 5, рр. 477-482. DOI: 10.1016/j.pnsc.2016.09.007.
4. Shin K., Kim D.H., Yeo S.C., Lee H.M. Structural stability of AgCu bimetallic nanoparticles and their application as a catalyst: a DFT study, Catalysis Today, 2012, vol. 185, issue 1, рр. 94-98. DOI: 10.1016/j.cattod.2011.09.022.
5. Kim S.J., Stach E.A., Handwerker C.A. Fabrication of conductive interconnects by Ag migration in Cu–Ag coreshell nanoparticles, Applied Physics Letters, 2010, vol.96, issue 14, рр. 144101-1-144101-4. DOI: 10.1063/1.3364132.
6. Panizon E., Bochicchio D., Rossi G., Ferrando R. Tuning the structure of nanoparticles by small concentrations of impurities, Chemistry of Materials, 2014, vol. 26, issue 11, рр. 3354-3356. DOI: 10.1021/cm501001f.
7. Shellaiah M., Sun K.W. Luminescent metal nanoclusters for potential chemosensor applications, Chemosensors, 2017, vol. 5, issue 4, art. no. 36, 31 p. DOI: 10.3390/chemosensors5040036.
8. Araujo T.P., Quiroz J., Barbosa E.C.M., Camargo P.H.C. Understanding plasmonic catalysis with controlled nanomaterials based on catalytic and plasmonic metals, Current Opinion in Colloid & Interface Science, 2019, vol. 39, pp. 110-122. DOI: 10.1016/j.cocis.2019.01.014.
9. Otto A. Surface-enhanced Raman scattering: «classical» and «chemical» origins, Light Scattering in Solids IV. Topics in Applied Physics, ed. M. Cardona, G. Güntherodt. Berlin, Heidelberg: Springer, 1984, chapter 6, pp. 289-418. DOI: 10.1007/3-540-11942-6_24.
10. Mohd Saidi M.S.A., Ghoshal S.K., Hamzah K. et. al. Visible light emission from Dy3+ doped tellurite glass: Role of silver and titania nanoparticles co-embedment, Journal of Non-Crystalline Solids, 2018, vol. 502, pp. 198-209. DOI: 10.1016/j.jnoncrysol.2018.09.012.
11. Maurya S.K., Tiwari S.P., Kumar A., Kumar K. Plasmonic enhancement of upconversion emission in Ag@NaYF4:Er3+/Yb3+ phosphor, Journal of Rare Earths, 2018, vol. 36, issue 9, pp. 903-910. DOI: 10.1016/j.jre.2018.03.003.
12. Qian K., Sweeny B.C., Johnston-Peck A.C. et. al. Surface plasmon-driven water reduction: gold nanoparticle size matters, Journal of the American Chemical Society, 2014, vol. 136, issue 28, pp. 9842-9845. DOI: 10.1021/ja504097v
13. da Silva A.G.M., Rodrigues T.S., Wang J. et. al. The fault in their shapes: investigating the surface-plasmonresonance-mediated catalytic activities of silver quasi-spheres, cubes, triangular prisms, and wires, Langmuir, 2015, vol. 31, issue 37, pp. 10272-10278. DOI: 10.1021/acs.langmuir.5b02838.
14. Gromov D.G., Dubkov S.V., Savitskiy A.I. et. al. Optimization of nanostructures based on Au, Ag, Au-Ag nanoparticles formed by thermal evaporation in vacuum for SERS applications, Applied Surface Science, 2019, vol. 489, pp. 701-707. DOI: 10.1016/j. apsusc.2019.05.286.
15. Satya Bharati M.S., Chandu B., Rao S.V. Explosives sensing using Ag-Cu alloy nanoparticles synthesized by femtosecond laser ablation and irradiation, RSC Advances, 2019, vol. 9, issue 3, pp. 1517-1525. DOI: 10.1039/C8RA08462A.
16. Tan K.S., Cheong K.Y. Advances of Ag, Cu, and Ag-Cu alloy nanoparticles synthesized via chemical reduction route, Journal of Nanoparticle Research, 2013, vol. 15, 1537, 29 p. DOI: 10.1007/s11051-013-1537-1.
17. Malviya K.D., Chattopadhyay K. Synthesis and mechanism of composition and size dependent morphology selection in nanoparticles of Ag-Cu alloys processed by laser ablation under liquid medium, The Journal of Physical Chemistry C, 2014, vol. 118, issue 24, pp. 13228-13237. DOI: 10.1021/jp502327c
18. Zhang P., Li Y., Wang D., Xia H. High-yield production of uniform gold nanoparticles with sizes from 31 to 577 nm via one-pot seeded growth and size-dependent SERS property, Particle & Particle Systems Characterization, 2016, vol. 33, issue 12, pp. 924-932. DOI: 10.1002/ppsc.201600188.
19. Gafner Yu.Ya., Gafner S.L. Vliyanie khimicheskogo sostava na razmer sintezirovannykh iz gazovoj fazy nanochastits Cu-Au [Influence of chemical composition on the size of Cu – Au nanoparticles synthesized from the gas phase], Fiziko-himicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 449-457. DOI: 10.26456/pcascnn/2019.11.449. (In Russian).
20. Bochicchio D., Ferrando R., Panizon E., Rossi G. Structures and segregation patterns of Ag-Cu and Ag-Ni nanoalloys adsorbed on MgO(001), Journal of Physics: Condensed Matter, 2016, vol. 28, art. no. 064005, 13 p. DOI: 10.1088/0953-8984/28/6/064005.
21. Gafner Yu., Gafner S., Redel L., Zamulin I. Dual structural transition in small nanoparticles of Cu-Au alloy, Journal of Nanoparticle Research, 2018, vol. 20, issue 2, art. no. 51, 14 p. DOI: 10.1007/s11051-018-4161-2.

⇐ Prevoius journal article | Content | Next journal article ⇒