Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Contribution of the dispersion interaction to the interface energy of cobalt crystals at the boundary with nonpolar organic liquids

A.M. Apekov1, I.G. Shebzukhova2

1 NorthCaucasus Federal University
2 Kabardino-Balkarian State University named after H.M. Berbekov

DOI: 10.26456/pcascnn/2023.15.231

Short communication

Abstract: The active implementation of devices based on the use of the properties of the metalorganic interface makes it important to study characteristics of such interfaces, especially of the metalorganic framework structures. The of these structures with the necessary properties is possiblesince one can vary the elemental composition in the  active metal centers as well as the organic ligandsbinding these centers. In this regard, understanding the  properties and nature of the interaction at the interface of a metal with organic substances becomes of primary interest. In this work, within the framework of the electron-statistical method, a correction to the interfacial energy of cobalt at the interface with non-polar organic liquids for the dispersion interaction of the Wigner-Seitz cells is obtained. The dependences of the dispersion correction on the orientation of the metal crystal and the permittivity of the organic liquid are determined. It is shown that the contribution of the dispersion correction to the interfacial energy is positive and decreases with an increase of the permittivity of the liquid.

Keywords: interfacial energy, dispersion contribution, electron-statistical method, non-polar organic liquid, cobalt

  • Aslan M. Apekov – Ph. D., Deputy Director, North-Caucasus Center for Mathematical Research, NorthCaucasus Federal University
  • Irina G. Shebzukhova – Dr. Sc., Full Professor, Department of Theoretical and Experimental Physics, Institute of Physics and Mathematics, Kabardino-Balkarian State University named after H.M. Berbekov

Reference:

Apekov, A.M. Contribution of the dispersion interaction to the interface energy of cobalt crystals at the boundary with nonpolar organic liquids / A.M. Apekov, I.G. Shebzukhova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 231-238. DOI: 10.26456/pcascnn/2023.15.231. (In Russian).

Full article (in Russian): download PDF file

References:

1. Ryder M. R., Tan J.-C. Nanoporous metal organic framework materials for smart applications, Materials Science and Technology, 2014, vol. 30, issue 13, pp. 1598-1612. DOI: 10.1179/1743284714y.0000000550.
2. Butova V.V., Soldatov M.A., Guda A.A. et al. Metal-organic frameworks: structure, properties, methods of synthesis and characterization, Russian Chemical Reviews, 2014, vol. 85, no. 3, pp. 280-307. DOI: 10.1070/RCR4554.
3. Li J.-R., Kuppler R.J., Zhou H.-C. Selective gas adsorption and separation in metal–organic frameworks, Chemical Society Reviews, 2009, vol. 38, issue 5, pp. 1477-1504. DOI: 10.1039/B802426J.
4. Qiu S., Xue M., Zhu G. Metal–organic framework membranes: from synthesis to separation application, Chemical Society Reviews, 2014, vol. 43, issue 16, pp. 6116-6140. DOI: 10.1039/C4CS00159A.
5. Rodenas T., Luz I., Prieto G. et al. Metal–organic framework nanosheets in polymer composite materials for gas separation, Nature Materials, 2015, vol. 14, pp. 48-55. DOI: 10.1038/nmat4113.
6. Britt D., Furukawa H., Wang B. et al. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites, Proceedings of the National Academy of Sciences USA, 2009, vol. 106, issue 49, pp. 20637-20640. DOI: 10.1073/pnas.0909718106.
7. Pan L., Olson D.H., Ciemnolonski L.R. et al. Separation of hydrocarbons with a microporous metal–organic framework, Angewandte Chemie International Edition, 2006, vol. 45, issue 4, pp. 616-619. DOI: 10.1002/anie.200503503.
8. Matsuda R., Tsujino T., Sato H. et al. Temperature responsive channel uniformity impacts on highly guestselective adsorption in a porous coordination polymer, Chemical Science, 2010, vol. 1, issue 3, pp. 315-321. DOI: 10.1039/C0SC00272K.
9. Barea E., Montoro C., Navarro J. Toxic gas removal – metal–organic frameworks for the capture and degradation of toxic gases and vapours, Chemical Society Reviews, 2014, vol. 43, issue 16, pp. 5419-5430. DOI: 10.1039/c3cs60475f.
10. Xiao B., Wheatley P.S., Zhao X. et al. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework, Journal of the American Chemical Society, 2007, vol. 129, issue 5, pp. 1203-1209. DOI: 10.1021/ja066098k.
11. Horcajada P., Chalati T., Serre C. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nature Materials, 2010, vol. 9, pp. 172-178. DOI: 10.1038/nmat2608.
12. Horcajada P., Gref R., Baati T. et al. Metal–organic frameworks in biomedicine, Chemical Reviews, 2012, vol. 112, issue 2, pp. 1232-1268. DOI:10.1021/cr200256v.
13. Bloch E.D., Queen W.L., Chavan S. et al. Gradual release of strongly bound nitric oxide from Fe2(NO)2, Journal of the American Chemical Society, 2015, vol. 137, issue 10, pp. 3466-3469. DOI: 10.1021/ja5132243.
14. Imbert D., Comby S., Chauvin A.-S., Bunzli J.-C.G. Lanthanide 8-hydroxyquinoline-based podates with efficient emission in the NIR range, Chemical Communications, 2005, issue 11, pp. 1432-1434. DOI: 10.1039/B416575F.
15. Heine J., Muller-Buschbaum K. Engineering metal-based luminescence in coordination polymers and metal–organic frameworks, Chemical Society Reviews, 2013, vol. 42, issue 24, pp. 9232-9242. DOI: 10.1039/C3CS60232J.
16. Hu Z., Deibert B.J., Li J. Luminescent metal–organic frameworks for chemical sensing and explosive detection, Chemical Society Reviews, 2014, vol. 43, issue 16, pp. 5815-5840. DOI: 10.1039/c4cs00010b.
17. Sato H., Matsuda R., Sugimoto K. et al. Photoactivation of a nanoporous crystal for on-demand guest trapping and conversion, Nature materials, 2010, vol. 9, pp. 661-666. DOI: 10.1038/nmat2808.
18. Yutkin M.P., Zavakhina M.S., Virovets A.V. et al. Synthesis, structure and magnetic behavior of new 1D metal–organic coordination polymer with Fe3O core, Inorganica Chimica Acta, 2011, vol. 365, issue 1, pp. 513-516. DOI: 10.1016/j.ica.2010.10.015.
19. Zhang W., Xiong R.-G. Ferroelectric metal–organic frameworks, Chemical Reviews, 2012, vol. 112, issue 2, pp. 1163-1195. DOI: 10.1021/cr200174w.
20. Silva C.G., Luz I., Llabres i Xamena F.X. et al Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation, Chemistry A European Journal, 2010, vol. 16, issue 36, pp. 11133 -11138. DOI: 10.1002/chem.200903526.
21. Gabuda S.P., Kozlova S.G., Dybtsev D.N., Fedin V.P. Supramolecular interactions and structural transformations in the metal-organic sorbent-acetone nanoreactor system, Journal of Structural Chemistry, 2009, vol. 50, issue 5, pp. 887-894. DOI: 10.1007/s10947-009-0132-x.
22. Gabuda S.P., Kozlova S.G., Samsonenko D.G. et al. Quantum rotations and chiral polarization of qubit prototype molecules in a highly porous metal–organic framework: 1H NMR T1 study, Journal of Physical Chemistry C, 2011, vol. 115, issue 42, pp. 20460-20465. DOI: 10.1021/jp206725k.
23. Xu X., Cao R., Jeong S., Cho J. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries, Nano Letters, 2012, vol. 12, issue 9, pp. 4988-4991. DOI: 10.1021/nl302618s.
24. Yang S.J., Nam S., Kim T. et al. Preparation and exceptional lithium anodic performance of porous carboncoated ZnO quantum dots derived from a metal-organic framework, Journal of the American Chemical Society, 2013, vol. 135, issue 20, pp. 7394-7397. DOI: 10.1021/ja311550t.
25. Meng F.L., Fang Z.G., Li Z.X. et al. Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors, Journal of Materials Chemistry A, 2013, vol. 1, issue 24, pp. 7235-7241. DOI: 10.1039/C3TA11054K.
26. Apekov А.М., Shebzukhova I.G. Orientatsionnaya zavisimost' mezhfaznoj energii nizkotemperaturnoj modifikatsii titana na granitse s organicheskoj zhidkost' [Orientational dependence of the interphase energy of low temperature modification of titanium at the boundary with an organic liquid], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 17-23. DOI: 10.26456/pcascnn/2022.14.017.
27. Apekov A.M., Shebzukhova I.G. Interface energy of crystal faces of IIА-type metals at boundaries with nonpolar organic liquids, allowing for dispersion and polarization corrections, Bulletin of Russian Academy of Science. Physics, 2019, vol. 83, issue 6, pp. 760-763. DOI: 10.3103/S1062873819060078.
28. Apekov A.M., Shebzukhova I.G. Polarization correction to the interfacial energy of faces of alkali metal crystals at the borders with a nonpolar organic liquid, Bulletin of Russian Academy of Science. Physics, 2018, vol. 82, issue 7, pp. 789-792. DOI: 10.3103/S1062873818070067.
29. Apekov A.M., Shebzukhova I.G. Polyarizatsionnaya i dispersionnaya popravki k mezhfaznoj energii granej kristallov nizkotemperaturnykh modifikatsij kal'tsiya i bariya na granitse s nepolyarnymi organicheskimi zhidkostyami [Polarization and dispersion corrections to the interfacial energy of the facets at the boundary between calcium/barium crystals and nonpolar organic liquids], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2018, issue 10, pp. 20-26. DOI: 10.26456/pcascnn/2018.10.020.
30. Shebzukhova I.G., Apekov A.M. Vklad dispersionnogo vzaimodejstviya s-sfer v mezhfaznuyu energiyu kristallov α - Li i α - Na na granitse s nepolyarnymi organicheskimi zhidkostyami [Contribution of dispersion interaction of s-spheres into the interfacial energy of α - Li and α - Na crystals bounding non-polar organic liquid boundary], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, pp. 518-521. DOI: 10.26456/pcascnn/2017.9.518.
31. Shebzukhova I.G., Apekov A.M., Khokonov Kh.B. Orientation dependence of the interfacial energies of chromium and α-iron crystals at boundaries with nonpolar organic liquids, Bulletin of Russian Academy of Science. Physics, 2017, vol. 81, issue 5, pp. 605-607. DOI: 10.3103/S1062873817050173.
32. Shebzukhova I.G., Apekov A.M., Khokonov Kh.B. Anisotropy of the interface energy of IA and IB metals at a boundary with organic liquids, Bulletin of Russian Academy of Science. Physics, 2016, vol. 80, issue 6, pp. 657-659. DOI: 10.3103/S1062873816060307.

⇐ Prevoius journal article | Content | Next journal article ⇒