Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Evaluation of the properties of the fucoidan/Fe3O4 nanocomposite as a transport agent of covalently bound molecular cargo

V.E. Suprunchuk

North-Caucasus Federal University

DOI: 10.26456/pcascnn/2023.15.1039

Original article

Abstract: Magnetically controlled transport of drugs with targeted release of molecular cargo expands the possibilities of clinical therapy. This article explores the possibility of creating nanoparticles based on fucoidan modified with magnetite for biomedical purposes. The possibility of immobilizing a modelling fibrinolytic enzyme with a cross-linking agent was studied. The maximum loading of the enzyme is 2.06±0.09% of the mass. The particle size with immobilized alteplase according to scanningelectron microscopy was 94.4±24.3 nm, hydrodynamic diameter – 370 nm, zeta potential – -1.66±0.06 mV. The saturation magnetization of the sample is 6 emu/g. To understand the mechanisms of molecular load release, five kinetic models were applied to the results obtained: zero order, Weibull, Hill equation, Higuchi, Korsmeyer-Peppas. The use of mathematical modeling showed that the best model for describing this process is the Korsmeyer-Peppas kinetic equation (r2 = 0.97), and the release process is controlled by the Fick diffusion. The resulting biocomposite material is a promising candidate as a nanocarrier for an enzymatic agent.

Keywords: fucoidan, magnetite, magnetic nanoparticles, targeting, targeted delivery, alteplase, release kinetics, variable magnetic field

  • Victoria E. Suprunchuk – Ph. D., Senior Researcher, Docent, Department of Physics and Technology of Nanostructures and Materials Faculty of Physics and Technology, North-Caucasus Federal University

Reference:

Suprunchuk, V.E. Evaluation of the properties of the fucoidan/Fe3O4 nanocomposite as a transport agent of covalently bound molecular cargo / V.E. Suprunchuk // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 1039-1048. DOI: 10.26456/pcascnn/2023.15.1039. (In Russian).

Full article (in Russian): download PDF file

References:

1. Shubayev V.I., Pisanic T.R., Jin S. Magnetic nanoparticles for theragnostics, Advanced Drug Delivery Reviews, 2009, vol. 61, issue 6, pp. 467-477. DOI: 10.1016/j.addr.2009.03.007.
2. Demin A.M., Vakhrushev A. V., Pershina A.G. et al. Magnetic-responsive doxorubicin-containing materials based on Fe3O4 nanoparticles with a SiO2/PEG shell and study of their effects on cancer cell lines, International journal of molecular sciences, 2022, vol. 23, issue 16, art. no. 9093, 14 p. DOI: 10.3390/ijms23169093.
3. Li M., Bu W., Ren J. et al. Enhanced synergism of thermo-chemotherapy for liver cancer with magnetothermally responsive nanocarriers, Theranostics, 2018, vol. 8, issue 3, pp. 693-709. DOI: 10.7150/thno.21297.
4. Kumar A., Gupta M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles, Biomaterials, 2005, vol. 26, issue 13, pp. 1565-1573. DOI: 10.1016/j.biomaterials.2004.05.022.
5. Gupta A.K., Curtis A.S.G.. Surface modified superparamagnetic nanoparticles for drug delivery : Interaction studies with human fibroblasts in culture, Journal Of Materials Science: Materials In Medicine, 2004, vol. 4, issue 15, pp. 493-496. DOI: 10.1023/b:jmsm.0000021126.32934.20.
6. Jin J.O., Chauhan P.S., Arukha A.P. et al. The therapeutic potential of the anticancer activity of fucoidan: Current advances and hurdles, Marine Drugs, 2021, vol. 19, issue 5, art. no. 265, 17 p. DOI: 10.3390/md19050265.
7. Ushakova N.A., Morozevich G.E., Ustyuzhanina N.E. et al. Anticoagulant activity of fucoidans from brown algae, Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2009, vol. 3, issue 1, pp. 77-83. DOI: 10.1134/S1990750809010119.
8. Thuy T.T.T., Ly B.M., Van T.T.T. et al. Anti-HIV activity of fucoidans from three brown seaweed species, Carbohydrate Polymers, 2015, vol. 115, pp. 122-128. DOI: 10.1016/J.CARBPOL.2014.08.068.
9. Lu S., Yuan Z., Zhang, C.. Binding mechanisms of polysaccharides adsorbing onto magnetite concentrate surface, Powder Technology. 2018. vol. 340, pp. 17-25. DOI: 10.1016/j.powtec.2018.09.021.
10. Ghebouli R., Loyau S., Maire M. et al. Amino-fucoidan as a vector for rtPA-induced fibrinolysis in experimental thrombotic events, Thrombosis and haemostasis, 2018, vol. 118, issue 1, pp. 42-53. DOI: 10.1160/TH17-02-0132.
11. Suprunchuk V.E. Vysokointensivnaya nizkochastotnaya ul'trazvukovaya obrabotka sul'fatirovannogo polisakharida burykh vodoroslej [High-intensity low-frequency ultrasonic treatment of sulfated polysaccharide from brown algae]. Zhurnal Sibirskogo federal'nogo universiteta: Khimiya [Journal of Siberian Federal University: Chemistry], 2021, vol. 14, issue 4, pp. 582-592. DOI: 10.17516/1998-2836-0265. (In Russian).
12. Drozdov A.S., Ivanovski V., Avnir D., Vinogradov V.V. A universal magnetic ferrofluid: Nanomagnetite stable hydrosol with no added dispersants and at neutral pH, Journal of Colloid and Interface Science, 2016, vol. 468, pp. 307-312. DOI: 10.1016/j.jcis.2016.01.061.
13. Suprunchuk V.E.. Sozdanie i svojstva biokompozitnykh nanochastits na osnove fukoidana kak nositelya fibrinoliticheskogo fermenta [Creation and properties of biocomposite nanoparticles based on fucoidan as carriers of fibrinolytic enzyme], Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya i Khimicheskaya Tekhnologiya [ChemChemTech], 2023, vol. 66, no. 5, pp. 87-95. DOI:10.6060/ivkkt.20236605.6680. (In Russian).
14. Kruger N.J. The Bradford method for protein quantitation, The Protein Protocols Handbook. Springer Protocols Handbooks, ed. by J.M. Walker. Totowa, New Jersey, Humana Press, 2009, pp. 17-24. DOI: 10.1007/978-1-59745-198-7_4.
15. Friedrich R.P., Zaloga J., Schreiber E. et al. Tissue plasminogen activator binding to superparamagnetic iron oxide nanoparticle-covalent versus adsorptive approach, Nanoscale Research Letters. 2016. vol. 11, issue 1, art. no. 297, 11 p. DOI: 10.1186/s11671-016-1521-7.
16. Mendyk A., Jachowicz R., Fijorek K. et al. KinetDS: An open source software for dissolution test data analysis, Dissolution Technologies, 2012, vol. 19, issue 1, pp. 6-11. DOI:10.14227/DT190112P6.
17. KinetDS3.0. data analysis software. Available at: https://sourceforge.net/projects/kinetds/files/v 3.0/KinetDS3.0_Windows_32.zip/download (accessed 15.12.2022).
18. Anastasova E.I., Prilepskii A.Y., Fakhardo A.F. et al. Magnetite nanocontainers: toward injectable highly magnetic materials for targeted drug delivery, ACS Applied Materials & Interfaces, 2018, vol. 10, issue 36, pp. 30040-30044. DOI: 10.1021/acsami.8b10129.
19. Wu I.Y., Bala S., Škalko-Basnet N., di Cagno M.P. Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes, European Journal of Pharmaceutical Sciences, 2019, vol. 138, art. no. 105026, 43 p. DOI: 10.1016/j.ejps.2019.105026.
20. Vajhadin F., Mazloum-Ardakani M., Raeisi S. et al. Glutaraldehyde crosslinked doxorubicin promotes drug delivery efficiency using cobalt ferrite nanoparticles, Colloids and Surfaces B: Biointerfaces, 2022, art. no. 112870, 25 p. DOI: 10.1016/j.colsurfb.2022.112870.
21. Shagholani H., Ghoreishi S.M., Mousazadeh M. Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application, International Journal of Biological Macromolecules. 2015. vol. 78, pp. 130-136. DOI: 10.1016/j.ijbiomac.2015.02.042.
22. Düsenberg B., Groppe P., Müssig S. et al. Magnetizing polymer particles with a solvent-free single stage process using superparamagnetic iron oxide, Polymers, 2022, vol. 14, issue 19, art. no. 4178, 13 p. DOI: 10.3390/polym14194178.

⇐ Prevoius journal article | Content | Next journal article ⇒