Thickness of the surface layer of as-class hydrocarbons
V.M. Yurov, V.S. Portnov, A.D. Mausymbayeva
Karaganda Technical University
DOI: 10.26456/pcascnn/2022.14.331
Original article
Abstract: The aim of the work is to build a model of the surface layer of objects (crystals) and to elucidate the role of surface energy in physical processes occurring in the nanoscale region. Frame hydrocarbons of the adamantane type, which have a highly symmetrical diamond-like structure, were chosen as objects. On the basis of an empirical model, the thickness of the surface layer and the surface energy of framework hydrocarbons were determined for the first time. In practice, this is very important, since all physical and chemical processes significant in operation occur through the surface layer. For adamantane, the thickness of this layer is 21.6 nm, and for diamond it is 8.2 nm, that is, they represent a nanostructure. Such a difference in the thickness of the surface layer of the two types of structures causes their sharp difference in their properties, in particular, in their surface energy, which determines their mechanical properties. For adamantane, the surface energy is 378.7 mJ/m2, and for diamond it is 9400 mJ/m2. In practice, researchers have found that under shock-wave action, the degree of adamantane→diamond transformation is almost 30%. The work of adhesion for frame hydrocarbons is 400–500 mJ/m2, and internal stresses are 35–45 MPa, which in the surface layer lead to a decrease in adhesive strength and the inverse Hall-Petch effect.
Keywords: surface layer, nanostructure, surface energy, atomic volume, size effect, hydrocarbon, adamantane, diamond, empirical model
- Viktor M. Yurov – Ph. D., Associate Professor, Deposits of minerals Department, Karaganda Technical University
- Vasily S. Portnov – Dr. Sc., Professor, Deposits of minerals Department, Karaganda Technical University
- Aliya D. Mausymbayeva – Ph. D., Associate Professor, Deposits of minerals Department, Karaganda Technical University
Reference:
Yurov, V.M. Thickness of the surface layer of as-class hydrocarbons / V.M. Yurov, V.S. Portnov, A.D. Mausymbayeva // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 331-341. DOI: 10.26456/pcascnn/2022.14.331. (In Russian).
Full article (in Russian): download PDF file
References:
1. Yurov V.M., Guchenko S.A., Laurinas V.Ch. Tolshchina poverkhnostnogo sloya, poverkhnostnaya energiya i atomnyj ob"em elementa [Thickness of the surface layer, surface energy and atomic volume of the element], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2018, issue 10, pp. 691-699. DOI: 10.26456/pcascnn/2018.10.691. (In Russian).
2. Yurov V.M. Tolshchina poverkhnostnogo sloya atomarno-gladkikh kristallov [Thickness of the surface layer of atomic-smooth crystals], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 389-397. (In Russian). DOI: 10.26456/pcascnn/2019.11.389.
3. Yurov V.M., Makhanov K.M., Portnov V.S. Nanostruktury v tonkom sloe ugol'nogo veshchestva [Nanostructures in the thin layer of coal substance] Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 746-757. DOI: 10.26456/pcascnn/2020.12.746.
4. Gyulmaliev A.M., Golovin G.S., Gladun T.G. Teoreticheskie osnovy khimii uglya [Theoretical foundations of coal chemistry]. Moscow, Moscow State Mining University Publ., 2003, 556 p. (In Russian).
5. Brusilovsky A.I. Fazovye prevrashcheniya pri razrabotke mestorozhdenij nefti i gaza [Phase transformations in the development of oil and gas fields]. Moscow, Graal' Publ., 2002, 575 p. (In Russian).
6. Rekhviashvili S.Sh., Kishtikova E.V., Karmokova R.Yu., Karmokov A.M. Calculating the Tolman constant, Technical Physics Letters, 2007, vol. 33, issue 1, pp. 48-50. DOI: 10.1134/S1063785007010130.
7. Yurov V.M., Goncharenko V.I., Oleshko V.S., Sha M. Аnisotropy of the surface of carbon materials, Eurasian Physical Technical Journal, 2021, vol. 18, no. 3 (37), pp. 15-24. DOI 10.31489/2021Ph3/101-114.
8. Roldugin, V.I. Fizikokhimiya poverkhnosti [Physical chemistry of the surface]. Dolgoprudnyj: Publishing House «Intellekt», 2008, 508 p. (In Russian).
9. Uvarov N.F., Boldyrev V.V. Size effects in chemistry of heterogeneous systems, Russian Chemical Reviews, 2001, vol. 70, issue 4, pp. 265-284. DOI: 10.1070/RC2001v070n04ABEH000638.
10. Oura K., Lifshits V.G., Saranin A.A. et al. Vvedenie v fiziku poverkhnosti [Introduction to surface physics]. Moscow: Nauka Publ., 2006, 490 p. (In Russian).
11. Rusanov A.I. Phasengleichgewichte und grenzflächenerscheinungen, German edition by W. Schirmer. Berlin, Akademie-Verlag, 1978, 465 p.
12. Andrievsky R.A., Ragulya A.V. Nanostrukturnye materialy [Nanostructural materials]. Moscow, Publishing Center «Academy», 2005, 192 p. (In Russian).
13. Suzdalev I.P. Nanotekhnologiya: fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov [Nanotechnology: physical chemistry of nanoclusters, nanostructures and nanomaterials]. Moscow, KomKniga Publ., 2006, 592 p. (In Russian).
14. Zimon A.D. Adgeziya plenok i pokrytij [Adhesion of films and coatings]. Moscow, Chemistry Publ., 1977, 352 p. (In Russian).
15. Yurov V.M., Laurinas V.Ch., Guchenko S.A. Nekotorye voprosy fiziki prochnosti metallicheskikh nanostruktur [Some questions of physics of strength of metal nanostructures], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2013, issue 5, pp. 408-412. (In Russian).
16. Novakov I.A., Orlinson B.S. Polymers based on adamantane derivatives: synthesis, properties and application, Polymer Science, Series C, 2005, vol. 47, issue 1, pp. 50-73.
17. Tolochko B.P., Titov V.M., Chernyshev A.P. et al. Radikal'nyj mekhanizm obrazovaniya nanochastits almaza posle udarno-volnovogo vozdejstviya na adamantan [Radical mechanism of diamond nanoparticles formation after the shock-wave impact on the adamantane]. Novosibirsk, Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, 2006, 11 p.