Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Variability of structural transformations in bimetallic Cu-Ag nanoalloys

N.I. Nepsha, A.D. Veselov, K.G. Savina, S.S. Bogdanov, A.Yu.. Kolosov, V.S. Myasnichenko, N.Yu.. Sdobnyakov

Tver State University

DOI: 10.26456/pcascnn/2022.14.211

Original article

Abstract: In this work, bimetallic Cu-Ag nanoparticles of five stoichiometric compositions of various sizes were studied by molecular dynamics method using a many body EAM potential. Regularities of the structure formation are established, their characteristic features are described. In particular, in compositions with 10, 70, and 90 at.% Cu content, after the melt cooling, typical fcc structures with intersecting atomic planes of the hcp phase are formed. In compositions of 30 and 50 at.% Cu, the fraction of identified phases does not exceed 20% of the total number of atoms. A tendency to the formation of a core-shell structure was revealed in the case of a high copper content, while in the case of a high silver content, a so-called onion structure is formed. Using the caloric curves of the potential term of the internal energy, the melting and crystallization temperatures were determined. It has been established that the concentration dependences of the melting temperature of bimetallic Cu-Ag nanoparticles have a minimum corresponding to the equiatomic composition for all sizes. For the crystallization temperature, both the concentration dependences and the size dependences are less pronounced, but the minimum value of the crystallization temperature also corresponds to the equiatomic composition for all sizes; with an increase in the size of bimetallic Cu-Ag nanoparticles, a slight increase in the crystallization temperature is observed.

Keywords: molecular dynamics method, LAMMPS, EAM potential, polyhedral template matching method, bimetallic nanoparticles, silver, copper, structure formation, melting and crystallization temperatures

  • Nikita I. Nepsha – 2nd year postgraduate student, General Physics Department, Tver State University
  • Alexei D. Veselov – 4th year postgraduate student, General Physics Department, Tver State University
  • Kseniya G. Savina – 2nd year graduate student, General Physics Department, Tver State University
  • Sergei S. Bogdanov – Researcher, General Physics Department, Tver State University
  • Andrei Yu.. Kolosov – Ph. D., Researcher, General Physics Department, Tver State University
  • Vladimir S. Myasnichenko – Researcher, General Physics Department, Tver State University
  • Nickolay Yu.. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University

Reference:

Nepsha, N.I. Variability of structural transformations in bimetallic Cu-Ag nanoalloys / N.I. Nepsha, A.D. Veselov, K.G. Savina, S.S. Bogdanov, A.Yu.. Kolosov, V.S. Myasnichenko, N.Yu.. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 211-226. DOI: 10.26456/pcascnn/2022.14.211. (In Russian).

Full article (in Russian): download PDF file

References:

1. Ringe E., McMahon J.M., Sohn K. et al. Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach, The Journal of Physical Chemistry C, 2010, vol. 114, issue 29, pp. 12511-12516. DOI: 10.1021/jp104366r.
2. Ferrando R., Jellinek J., Johnston R.L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles, Chemical Reviews, 2008, vol. 108, issue 3, pp. 845-915. DOI: 10.1021/cr040090g.
3. Myasnichenko V.S., Eshov P.M., Savina K.G. et al. Zakonomernosti strukturoobrazovaniya v bimetallicheskikh nanochastitsakh s raznoj temperaturoj kristallizatsii [Regularities of structure formation in bimetallic nanoparticles with different crystallization temperatures], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 568-579. DOI: 10.26456/pcascnn/2021.13.568.
4. Myasnichenko V.S., Sdobnyakov N.Yu., Kolosov A.Yu. et al. Modelirovanie protsessov strukturoobrazovaniya v bimetallicheskikh nanosplavakh razlichnogo sostava [Modeling of processes of structure formation in bimetallic nanoalloys of different composition], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, pp. 323-329. DOI: 10.26456/pcascnn/2017.9.323.
5. Gaudry M., Cottancin E., Pellarin M.et al. Size and composition dependence in the optical properties of mixed (transition metal/noble metal) embedded clusters, Physical Review B, 2003, vol. 67, issue 15, pp. 155409-1-155409-10. DOI: 10.1103/PhysRevB.67.155409.
6. Bochicchio D., Ferrando R. Morphological instability of core-shell metallic nanoparticles, Physical Review B, 2013, vol. 87, issue 16, pp. 165435-1-165435-13. DOI: 10.1103/PhysRevB.87.165435.
7. Langlois C., Li Z.L., Yuan J. et al. Transition from core–shell to Janus chemical configuration for bimetallic nanoparticles, Nanoscale, 2012, vol. 4, issue 11, pp. 3381-3388. DOI: 10.1039/C2NR11954D.
8. Laasonen K., Panizon E., Bochicchio D., Ferrando R. Competition between icosahedral motifs in AgCu, AgNi, and AgCo nanoalloys: a combined atomistic–DFT study, The Journal of Physical Chemistry C, 2013, vol. 117, issue 49, pp. 26405-26413. DOI: 10.1021/jp410379u.
9. Ferrando R. Symmetry breaking and morphological instabilities in core-shell metallic nanoparticles, Journal of Physics: Condensed Matter, 2015, vol. 27, issue 1, art. no. 013003, 35 p. DOI: 10.1088/0953-8984/27/1/013003.
10. Johnston R.L. Chapter 1 - Metal nanoparticles and nanoalloys, Frontiers of Nanoscience, ed. by R.L. Johnston, J.P. Wilcoxon. 2012, vol. 3: Metal Nanoparticles and Nanoalloys, pp. 1-42. DOI: 10.1016/B978-0-08-096357-0.00006-6.
11. Ferrando R. Structure and properties of nanoalloys, Frontiers of Nanoscience, 2016, vol. 10: Structure and Properties of Nanoalloys, pp. 2-337. DOI: 10.1016/B978-0-08-100212-4.09993-4.
12. Alonso J. Structure and properties of atomic nanoclusters, 2nd ed. London, Imperial College Press, 2011, 492 p. DOI: 10.1142/p784.
13. Atomsk. Available at: www.url: https://atomsk.univ-lille.fr (accessed 15.09.2022).
14. Cox P.A. The electronic structure and chemistry of solids. Oxford, Oxford University Press, 1987, 272 p.
15. Kittel C. Introduction to solid state physics, 8th ed. New York, John Wiley & Sons Inc., 2005, 700 p.
16. LAMMPS Molecular Dynamics Simulator. Available at: www.url:http://lammps.sandia.gov. (accessed 15.09.2022).
17. Allen M.P., Tildesley D.J. Computer simulation of liquids, 2nd ed. New York, Oxford University Press, 2017, 641 p. DOI: 10.1093/oso/9780198803195.001.0001.
18. Rapaport D.C. The art of molecular dynamics simulation, 2nd ed. Cambridge, Cambridge University Press, 2004, 564 p. DOI: 10.1017/CBO9780511816581.
19. Interatomic Potentials Repository. Available at: www.url: https://www.ctcms.nist.gov/potentials/entry/2006--Williams-P-L-Mishin-Y-Hamilton-J-C--Cu-Ag (accessed 15.09.2022).
20. Williams P.L., Mishin Y., Hamilton J.C. An embedded-atom potential for the Cu-Ag system, Modelling and Simulation in Materials Science and Engineering, 2006, vol. 14, no. 5, pp. 817-833. DOI: 10.1088/0965-0393/14/5/002.
21. OVITO Open Visualization Tool. Available at: www.url: http://www.ovito.org. (accessed 15.09.2022).
22. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1-015012-7. DOI: 10.1088/0965-0393/18/1/015012.
23. Larsen P.M., Schmidt S., Schiøtz J. Robust structural identification via polyhedral template matching, Modelling and Simulation in Materials Science and Engineering, 2016, vol. 24, no. 5, art. no. 055007, 18 p. DOI: 10.1088/0965-0393/24/5/055007.
24. Sdobnyakov N.Yu., Myasnichenko V.S., San C.-H. et al. Simulation of phase transformations in titanium nanoalloy at different cooling rates, Materials Chemistry and Physics, 2019, vol. 238, art. no. 121895, 9 p.
25. Ji P., Zhao Y., Wan M. et al.Transitions and geometric evolution of Cu309 nanocluster during slow cooling process, Crystals, 2018, vol. 8, issue 5, art. no. 231, 12 p. DOI: 10.3390/cryst8050231.
26. Liu C., Wang R., Jian Z., Gao T.The influence of grain boundaries on crystal structure and tensile mechanical properties of Al0.1CoCrFeNi high-entropy alloys studied by molecular dynamics method, Crystals, 2021, vol. 12, issue 1, art. no. 48, 12 p. DOI: 10.3390/cryst12010048.
27. Guo X.T., Xie H., Meng Z. Deformation mechanism of solidified Ti3Al alloys with penta twins under shear loading, Metals, 2022, vol. 12, issue 8, art. no. 1356, 11 p. DOI: 10.3390/met12081356.
28. Marcelo M.M., Dassie S.A., Leiva E.P.M. Collision as a way of forming bimetallic nanoclusters of various structures and chemical compositions, The Journal of Chemical Physics, 2005, vol. 123, issue 18, pp. 184505-1-184505-6. DOI: 10.1063/1.2104487.
29. Baletto F., Mottet C., Ferrando R. Growth of three-shell onionlike bimetallic nanoparticles, Physical Review Letters, 2003, vol. 90, issue 13, pp. 135504-1-135504-4. DOI: 10.1103/physrevlett.90.135504.
30. Grammatikopoulos P., Kioseoglou J., Galea A. et al. Kinetic trapping through coalescence and the formation of patterned Ag–Cu nanoparticles, Nanoscale, 2016, vol. 8, issue 18, pp.. 9780-9790. DOI: 10.1039/c5nr08256k.
31. Sdobnyakov N.Yu., Sokolov D.N., Bazulev A.N. et al. Relation between the size dependences of the melting and crystallization temperatures of metallic nanoparticles, Russian Metallurgy (Metally), 2013, no. 2, pp. 100-105. DOI: 10.1134/S0036029513020110.
32. Sdobnyakov N.Yu., Sokolov D.N., Samsonov V.M., Komarov P.V. Gupta multiparticle potential study of the hysteresis of the melting and solidification of gold nanoclusters, Russian Metallurgy (Metally), 2012, no. 3, pp. 209-214. DOI: 10.1134/S0036029512030111.
33. Sdobnyakov N.Yu., Sokolov D.N. Izuchenie termodinamicheskikh i strukturnykh kharakteristik nanochastits metallov v protsessakh plavleniya i kristallizatsii: teoriya i komp'yuternoe modelirovanie: monografiya [Study of the thermodynamic and structural characteristics of metal nanoparticles in the processes of melting and crystallization: theory and computer modeling: monograph]. Tver, Tver State University Publ., 2018, 176 p.
34. Zhang W., Peng Yu., Liu Z. Molecular dynamics simulations of the melting curve of NiAl alloy under pressure, AIP Advances, 2014, vol. 4, issue 5, pp. 057110-1-057110-13. DOI: 10.1063/1.4876515.
35. Luo S.N., Strachan A., Swift D.C. Nonequilibrium melting and crystallization of a model Lennard-Jones system, The Journal of Chemical Physics, 2004, vol. 120, issue 24, pp. 11640-11649. DOI: 10.1063/1.1755655.

⇐ Prevoius journal article | Content | Next journal article ⇒