On estimation of the area per a surfactant molecule in a 2D monolayer during the liquid-expanded-liquid-condensed phase transition at the air/water interface
E.S. Kartashynska
L.M. Litvinenko Institute of Physical Organic and Coal Chemistry
DOI: 10.26456/pcascnn/2021.13.196
Original article
Abstract: A method is proposed to estimate the area per molecule of a surfactant monolayer Ac at the transition onset of the liquid-expanded to a liquid-condensed phase based on two theoretical models. A thermodynamic model with account for nonideality of the mixing entropy makes it possible to estimate the Gibbs energy of surfactant clusterization using the Π-A isotherms obtained at different temperatures. On the other hand, the quantum-chemical approach also makes it possible to calculate this thermodynamic parameter and assess the structural features of the obtained monolayers. The values of the Gibbs clusterization energies of small surfactant associates and the geometric parameters of the monolayer unit cells were previously calculated using the quantum-chemical semiempirical method PM3 for eight classes of amphiphilic compounds: saturated and ethoxylated alcohols, saturated and cis-monoenic carboxylic acids, α -hydroxylic and α -amino acids, N -acyl-substituted alanines and dialkyl-substituted melamine. These parameters are used in the thermodynamic model with account for nonideality of the mixing entropy to calculate Ac . The estimated values Ac adequately reflect the experimental temperature dependence for the considered phase transition: with an increase in temperature the area per surfactant molecule of a fixed chain length decreases, and vice versa, with an increase in the surfactant chain length at a fixed temperature, the value Ac increases. This makes it possible to use the proposed approach for prognostic purposes.
Keywords: amphiphilic monolayer, clusterization Gibbs’ energy, unit cell, phase transition, thermodynamic model
- Elena S. Kartashynska – Dr. Sc., Researcher, Supramolecular Chemistry Department, L.M. Litvinenko Institute of Physical Organic and Coal Chemistry
Reference:
Kartashynska, E.S. On estimation of the area per a surfactant molecule in a 2D monolayer during the liquid-expanded-liquid-condensed phase transition at the air/water interface / E.S. Kartashynska // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 196-208. DOI: 10.26456/pcascnn/2021.13.196. (In Russian).
Full article (in Russian): download PDF file
References:
1. Gaines G.L., Jr. Insoluble monolayers at liquid - gas interfaces. – New-York: Interscience Publishers, 1966, xiv, 386 p.
2. Vysotsky Yu.B., Kartashynska E.S., Belyaeva E.A. et al. Сomputational quantum chemistry applied to monolayer formation at gas/liquid interfaces, Computational methods for complex liquid-fluid interfaces, ed. by M. Karbaschi, R. Miller M.T. Rahni. Boca Raton, CRC Press, 2015, chapter 10, pp. 199-249. DOI: 10.1201/b19337.
3. Fainerman V.B., Vollhardt D. Equations of state for Langmuir monolayers with two-dimensional phase transitions, Journal of Physical Chemistry B, 1999, vol. 103, issue 1, pp. 145-150. DOI: 10.1021/jp983109q.
4. Fainerman V.B., Vollhardt D. Equation of state for the phase coexistence region of insoluble monolayers under consideration of the entropy nonideality, Journal of Physical Chemistry B, 2008, vol. 112, issue 5, pp. 1477-1481. DOI: 10.1021/jp077372f.
5. Vollhardt D., Fainerman V.B., Siegel S. Thermodynamic and textural characterization of DPPG phospholipid monolayers, Journal of Physical Chemistry B, 2000, vol. 104, issue 17, pp. 4115-4121. DOI: 10.1021/jp992529s.
6. Fainerman V.B., Vollhardt D., Melzer V. Equation of state for insoluble monolayers of aggregating amphiphilic molecules, Journal of Physical Chemistry, 1996, vol. 100, issue 38, pp. 15478-15482. DOI: 10.1021/jp960523m.
7. Csonka G.I., Ángyán J.C. The origin of the problems with the PM3 core repulsion function, Journal of Molecular Structure: THEOCHEM, 1997, vol. 393, issie 1-3, pp. 31-38. DOI: 10.1016/S0166-1280(96)04872-5.
8. Vysotsky Yu.B. Bryantsev V.S., Fainerman V.B., Vollhardt D. Quantum chemical analysis of thermodynamics of the 2d cluster formation of odd n-alcohols at the air/water interface. Journal of Physical Chemistry B, 2002, vol. 106, issue 43, pp. 11285-11294. DOI: 10.1021/jp021352q.
9. Fomina E.S., Vysotsky Yu. B., Belyaeva E. A. et al. On hexagonal orientation of fatty alcohols in monolayers at the air/water interface: quantum-chemical approach, Journal of Physical Chemistry C, 2014, vol. 118, issue 8, pp. 4122-4130. DOI:10.1021/jp409911a.
10. Kartashynska E.S., Vysotsky Y.B., Belyaeva E.A. et al. Quantum-chemical analysis of hexagonal crystalline monolayers of ethoxylated nonionic surfactants at the air/water interface, Physical Chemistry Chemical Physics, 2014, vol. 16, issue 45, pp. 25129-25142. DOI: 10.1039/C4CP04081C.
11. Fomina E.S., Vysotsky Yu.B., Vollhardt D., Fainerman V.B., Miller R. Quantum chemical analysis of the thermodynamics of 2D cluster formation of 2 -hydroxycarboxylic acids at the air/water interface. Soft Matter, 2013, vol. 9, issue 31, pp. 7601-7616. DOI: 10.1039/C3SM51094H.
12. Ivanova A., Tadjer A., Tyutyukov N., Radoev B. Hydrophilic interactions between organic and water molecules as models for monolayers at the gas/water interface, Journal of Physical Chemistry A, 2005, vol. 109, issue 8, pp. 1692-1702. DOI: 10.1021/jp044646f.
13. Monteiro N.K.V., Firme C.L. Hydrogen − hydrogen bonds in highly branched alkanes and in alkane complexes: a DFT, ab initio, QTAIM, and ELF study, Journal of Physical Chemistry A, 2014, vol. 118, issue 9, pp. 1730-1740. DOI: 10.1021/jp500131z.
14. Vollhardt D., Siegel S., Cadenhead D.A. Effect of hydroxyl group position and system parameters on the features of hydroxystearic acid monolayers, Langmuir, 2004, vol. 20, issue 18, pp. 7670-7677. DOI: 10.1021/la049345b.
15. Majewski J., Popovitz-Biro R., Bouwman W.G. et al. Uncompressed crystalline monolayers of alcohols CnH2n+1OH( n=13 - 31) on water and their role as ice nucleators. Chemistry A European Journal, 1995, vol. 1, issue 5, pp. 304-311. DOI: 10.1002/chem.19950010507.
16. Karakashev S.I., Nguyen A.V., Miller J.D. Equilibrium adsorption of surfactants at the gas-liquid interface / S.I. Karakashev, Interfacial processes and molecular aggregation of surfactants. Advances in Polymer Science, vol. 218, ed. by R. Narayanan. Berlin, Heidelberg, Springer, 2008, pp. 25-55. DOI: 10.1007/12_2008_161.
17. Kjaer K., Als-Nielsen J., Helm C. A., Tippman-Krayer P., Moehwald H. Synchrotron X-ray diffraction and reflection studies of arachidic acid monolayers at the air-water, Journal of Physical Chemistry, 1989, vol. 93, issue 8, pp. 3200-3206. DOI: 10.1021/j100345a063.
18. Vysotsky Yu.B., Muratov D.V., Boldyreva F.L. et al. Quantum chemical analysis of the thermodynamics of 2D cluster formation of n -carboxylic acids at the air/water interface, Journal of Physical Chemistry B, 2006, vol. 110, issue 10, pp. 4717-4730. DOI: 10.1021/jp055804l.
19. Vollhardt D. Effect of unsaturation in fatty acids on the main characteristics of langmuir monolayers, Journal of Physical Chemistry C, 2007, vol. 111, issue 18, p. 6805-6812. DOI: 10.1021/jp0704822.
20. Vysotsky Yu.B., Belyaeva E.A., Vollhardt D., Aksenenko E.V. Thermodynamics of the clusterization process of cis isomers of unsaturated fatty acids at the air/water interface, Journal of Physical Chemistry B, 2009, vol. 113, issue 13, p. 4347-4359. DOI: 10.1021/jp808834a.
21. Wiedemann G., Brezesinski G., Vollhardt D., Möhwald H. Disorder in Langmuir monolayers. 1. Disordered packing of alkyl chains, Langmuir, 1998, vol. 14, issue 22, pp. 6485-6492. DOI: 10.1021/la980188o.
22. Weissbuch I., Berfeld M., Bouwman W. et al. Separation of enantiomers and racemate formation in two-dimensions crystals at the water surface from racemic α -amino acid amphiphiles: design and structure. Journal ,of American Chemical Society, 1997, vol. 119, issue 5, pp. 933-942. DOI: 10.1021/ja9613926.
23. Nandi N., Vollhardt D. Effect of molecular chirality on the morphology of biomimetic Langmuir monolayers, Chemical Review, 2003, vol. 103, issue 10, pp. 4033-4075. DOI: 10.1021/cr0006674.
24. Kartashynska E.S., Vysotsky Yu.B., Fainerman V.B., Vollhardt D. Quantum-chemical analysis of condensed monolayer phases of N-alkanoyl-substituted alanine at the air/water interface, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, vol. 546, pp. 346-359. DOI: 10.1016/j.colsurfa.2018.03.027.
25. Vollhardt D., Fainerman V. B., Liu F. Thermodynamic and structural characterization of amphiphilic melamine-type monolayers, Journal of Physical Chemistry, 2005, vol. 109, issue 23, pp. 11706-11711. DOI: 10.1021/jp050796u.
26. Vysotsky Yu.B., Shved A.A., Belyaeva E.A. et al. Quantum-chemical description of the thermodynamic characteristics of clusterization of melamine-type amphiphiles at the air/water interface, Journal of Physical Chemistry B, 2009, vol. 113, issue 40, pp. 13235-13248. DOI: 10.1021/jp904598k.
27. Vysotsky Yu. B., Kartashynska E. S., Belyaeva E. A., Vollhardt D. Quantization of the molecular tilt angle of amphiphile monolayers at the air/water interface, Journal of Physical Chemistry C, 2015, vol. 119, issue 10, pp. 5523-5533. DOI: 10.1021/jp5130298.
28. Bibo A.M., Peterson I.R. Phase diagrams of monolayers of the long chain fatty acids, Advanced Materials, 1990, vol. 2, issue 6-7, pp. 309-311. DOI: 10.1002/adma.19900020608.