Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов
Основан в 2009 году


ФХ-2021


Синтез и исследование газочувствительных наноструктур системы Zn–Sn–O

Аннотация: Наностержни оксида цинка синтезированы гидротермальным методом. Проведена обработка полученных образцов в водно-спиртовом растворе станната калия и мочевины при 170°С в течение 30 и 60 минут. В результате получены наноструктуры Zn–Sn–O. Химический состав поверхности образцов ZnO и Zn–Sn–O исследован с помощью рентгеновской фотоэлектронной спектроскопии. Проанализирована их чувствительность к парам изопропилового спирта (1000 мд) при температурах 120°С, 180°С, 250 °С. Показано перераспределение электронной плотности при формировании композитных наноструктур Zn–Sn–O, проявляющееся в химическом сдвиге пиков O1s и Zn2p. Это свидетельствует о перестроении химических связей при замещении атомов цинка оловом. Обнаружено, что чувствительность композитных структур к парам изопропилового спирта значительно превышает чувствительность ZnO во всем исследуемом температурном диапазоне. Улучшение газочувствительных свойств связано с наличием в образцах системы Zn–Sn–O поверхностных центров различного типа, принимающих участие в адсорбции и окислении изопропилового спирта.

Кинетика гидрохимического фторирования кремнийсодержащих отходов титаномагнетитовых руд

Аннотация: Предложен способ получения высокодисперсного аморфного кремнезема из отходов обогащения низкотитанистых ванадий содержащих титаномагнетитов АО «ЕВРАЗ Качканарский ГОК» – хвостов мокрой магнитной сепарации. Применение раствора гидрофторида аммония (NH4HF2) позволяет практически селективно извлечь кремний в раствор в виде гексафторосиликата аммония. Степень извлечения кремния раствором 1,0–2,5мас.% NH4HF2 за 6 часов составляет 46%. Диффузионный процесс выщелачивания кремния из ХММС описывается кинетическим уравнением 1–(1–α)1/3=0,0043·exp(–5230/RT)·τ. Аморфный кремнезем SiO2 , полученный золь-гель методом из фторидного кремнийсодержащего раствора, имеет высокоразвитую поверхность Sred=320 м2/г, рассчитанный из средней плотности «белой сажи» размер частиц составляет dmed=10 нм. Увеличение концентрации NH4HF2 до 20 мас.% приводит к повышению растворимости кремния, а также других компонентов хвостов мокрой магнитной сепарации, которые являются нежелательными примесями в конечном продукте SiO2. В целом показана перспективность гидрохимического выщелачивания кремнийсодержащих промышленных отходов – хвостов мокрой магнитной сепарации слабыми растворами гидрофторида аммония для синтеза чистого аморфного SiO2.

Полимеризация при взаимодействии α-галоидакриловых кислот с третичными аминами

Аннотация: Приведены результаты самопроизвольной полимеризации α-хлоракриловой и α -бромакриловой кислот с третичными аминами при невысокой температуре. В результате самопроизвольной полимеризации при взаимодействии α -галоидакриловых кислот с третичными аминами образуются полимеры, содержащие четвертичные аммониевые группы. С целью подтверждения данного предположения были проведены ЯМР- и ИК-спектроскопические исследования продуктов самопроизвольной полимеризации. Показано, что сопутствующая реакция кватернизации, спонтанной полимеризации, имеет место как в смеси реагентов, так и в присутствии растворителя, т.е. и при смешении непредельного амина и галоидного алкила. Изучены кинетические закономерности реакции полимеризации и показано, что реакция кватернизации, являющаяся лимитирующей стадией процесса самопроизвольной полимеризации, протекает по SN2–механизму. Описываются первые попытки получения новых нанокомпозиционных материалов на основе синтезированных сополимеров и модифицированного монтмориллонита. Анализ литературных данных показывает, что особенности получения нанокомпозитов на основе Na+ –монтмориллонита и водорастворимых сополимеров ранее не изучались.

Синтез и физико-химическое исследование металлокомплекса церия и цефазолина

Аннотация: В данной работе коллективом авторов путём взаимодействия водных растворов хлорида трёхвалентного церия и натриевой соли цефазолина получено и выделено в твердом виде металлокомплексное соединение. Его элементный состав установлен с помощью метода рентгеноспектрального электронно-зондового анализа, описаны термические характеристики данного соединения, температура его разложения, состав и способ координации внутренней сферы данного металлокомплекса был уточнен методами термогравиметрии, и дифференциальной сканирующей калориметрии и методом ИК-спектроскопии. На основании полученных данных установлено, что внутренняя сфера металллокомплекса содержит в своем составе три молекулы цефазолина и три молекулы внутрисферной воды. Состав внутренней сферы отвечает брутто-формуле  [CeCzl3(H2O)3]. На основании данных ИК-спектроскопии сделаны выводы о координации цефазолина к центральному иону через амидную и карбоксильную группы.

Модифицирование кальцийфосфатной пенокерамики биоапатитом в среде SBF

Аннотация: Получена многофазная кальцийфосфатная пенокерамика, представленная β -трикальцийфосфатом (65%) и β -пирофосфатом кальция ( 25 %), включающая гидроксиапатит (5 %) и α -трикальцийфосфат (5 %), пористостью 60 – 64 % со сквозной архитектурой пенополиуретана. Нанесение слоя гидроксиапатита приводило к увеличению содержания гидроксиапатита до 25 %,  α-трикальцийфосфата до 40 %, и повышению статической прочности до 0,03 МПа при снижении пористости до 49 %. Нанесение второго слоя гидроксиапатита способствовало повышению содержания гидроксиапатита до 40 %, статическая прочность достигала 0,05 МПа при пористости 40 %. Формирование биоапатита в виде слоя «пеносфер» размером от 2 до 10 мкм происходило в процессе модифицирования всех видов пенокерамики в растворе SBF в течение 21 – 28 суток. Модифицированная кальцийфосфатная пенокерамика, обогащенная α -трикальцийфосфатом и гидроксиапатитом, характеризовалась максимальной статической прочностью 0,08 МПа при пористости 38%.