УДК 776.9:62.19.048 **МЕХАНИЗМ ИЗМЕНЕНИЯ НАНОСТРУКТУРЫ ПЛЕНОК** СМЕШАННЫХ ОКСИДОВ МОЛИБДЕНА-ВАНАДИЯ В ПРОЦЕССЕ ТВЕРДОФАЗНОЙ ФОТОПОЛИМЕРИЗАЦИИ

Т.В. Свиридова, З.А. Якубовская, В.Б. Оджаев, Д.В. Свиридов Белорусский государственный университет 220030, Республика Беларусь, Минск, пр. Независимости, 4 sviridova@bsu.by

DOI: 10.26456/pcascnn/2023.15.1029

Аннотация: В работе приведены результаты изучения характера изменения топологии поверхности в результате фотостимулированной полимеризации фоторезистных слоев на основе высших оксидов – неорганических полимеров. С использованием атомносиловой микроскопии выполнено исследование изменения наноструктуры поверхности пленок смешанных оксидов молибдена-ванадия $(V_2O_5:MoO_3 = 3:2)$ в тонких процессе УФ-стимулированной полимеризации. Фрактальный анализ атомно-силовых позволил установить, твердофазная полимеризация изображений что конденсации смешаннооксидных слоях, полученных путем соответствующих оксокислот, протекает с участием смешанных оксоолигомеров по 3D-механизму. При этом теряется анизотропия, характерная для исходной пленки и обусловленная направленной агломерацией лентообразных смешанных оксоолигомеров, входящих в ее состав. Развивающиеся в смешаннооксидном слое полимеризационные процессы приводят к образованию агломератов зерен, состоящих из четко огранённых псевдокристаллитов нанометрового размера. Одновременно в процессе экспонирования происходит твердофазная рекристаллизации аморфизированной оксидной пленки, результатом чего является увеличение значения среднего отклонения профиля поверхности. В процессе избирательного кислотного травления происходит обнажение скрытой внутренней структуры фоточувствительного оксидного слоя и дробление псевдокристаллитов, что приводит к снижению шероховатости поверхности до исходной величины. Указанные особенности структуры фоточувствительных смешаннооксидных пленок МоО₃/V₂O₅ имеют принципиальное значение для создания неорганических фоторезистов.

Ключевые слова: фотополимеризация, смешанные оксиды молибдена-ванадия, тонкие пленки, наноструктура, неорганические фоторезисты, атомно-силовая микроскопия.

1. Введение

В неорганические фоторезисты последние лесятилетия рассматриваются в качестве альтернативы их органическим аналогам, поскольку в существенной мере расширяют области практического применения фотолитографии. В частности, несомненным преимуществом неорганических фоторезистов на основе высших оксидов является высокая фоточувствительность, химическая стойкость, плазмо- и термостабильность (в том числе и в окислительных средах), что позволяет их использовать для создания микромеханических устройств [1-4]. В свою очередь, сочетание малой дефектности оксидных слоев с возможностью кривизны обеспечения высокой угла края травления лелает неорганические фоторезисты перспективным объектом для использования

© Т.В. Свиридова, З.А. Якубовская, В.Б. Оджаев, Д.В. Свиридов, 2023

в качестве высокоустойчивых масок для глубинного ионного травления, что позволяет отказаться от использования в этих приложениях многослойных маскирующих систем органической природы.

Одним из традиционных методов осаждения фоторезистных слоев на основе неорганических полимеров-оксосоединений (в первую очередь, гидратированных оксидов переходных элементов) является метод полива, предполагающий использование в качестве прекурсора водных растворов соответствующих полиоксокислот, полученных методом ионного обмена. Достоинствами такого способа получения оксидных слоев является возможность управления процессом осаждения пленки и ее составом за счет варьирования концентрации, состава прекурсоров и *pH* раствора, а также возможность использования прекурсора, свободного от посторонних ионов, способных оказывать паразитное влияние на процессы формирование структуры оксидно-гидроксидного слоя [5-7].

Выполненные исследования показали, ранее что оксидногидроксидные олигомеры молибдена, вольфрама и ванадия, присутствующие в водных растворах соответствующих оксокислот и в осажденных из них пленках, способны участвовать в спонтанных, а также термо- и фотостимулированных полимеризационных процессах как в водной среде, так и в твердой фазе. При этом было установлено, что дефектность фотополимеризованных оксидных слоев существенной В мере определяется природой оксидно-гидроксидных олигомеров, а также концентрацией и предподготовкой раствора-прекурсора. Для получения малодефектных пленок в качестве прекурсоров наиболее перспективными оказываются разбавленные (0,01-0,025 М) водные растворы молибденовой и смешанной ванадий-молибденовой кислот. Исследование микрорельефа поверхности пленок такого рода показало, что они представляют собой гладкие бездефектные слои, особенности микрорельефа поверхности которых не удается изучить с помощью сканирующей электронной микроскопии [8-12].

Целью настоящего исследования являлось изучение механизма фотостимулированных топологических превращений в смешаннооксидных слоях молибдена-ванадия в процессе фотоиндуцированной твердофазной поликонденсации с использованием для этих целей фрактального анализа данных атомно-силовой микроскопии.

2. Методика эксперимента и описание результатов

Пленки смешанных оксидов молибдена-ванадия получали из водных растворов смешанных оксокислот на поверхности пластинок из монокристаллического кремния путем центрифугирования. По данным электронно-микроскопического исследования толщина полученных таким

образом смешаннооксидных пленок не превышала 6 мкм. Водные растворы смешанных оксокислот (мольное соотношение $V_2O_5: MoO_3$ составляло 3:2) были получены методом ионного обмена из смеси растворов парамолибдата и метаванадата аммония с использованием катионита КУ-2 в Н-форме. Полученные оксидные пленки облучали с использованием ультрафиолетовой (УФ) лампы Philips TUV 15 (длина волны 253,7 нм, интенсивность 1,5 мВт/см²). Проявление полученного рисунка проводилось в 0,001-0,1 М растворах уксусной кислоты. Время 5-10 мин. Исследование проявления составляло микрогеометрии поверхности полученных пленок выполняли с помощью сканирующего электронного микроскопа Leo-1420 и атомно-силового микроскопа NT-206. Обработку полученных изображений проводили с использованием мультиплатформенного модульного программного обеспечения Gwyddion [13], предназначенного для визуализации и анализа данных, полученных с помощью атомно-силовой микроскопии. Фрактальную размерность поверхности определяли по методу кубов.

Выполненное исследование показало, что получаемые методом смешаннооксидные химического осаждения пленки способны к твердофазной фотополимеризации, быть селективной что может продемонстрировано существенной разницей в скоростях травления экспонированных и необлученных участков (последнее в существенной мере определяется концентрацией раствора травления – см. Таблицу 1).

Концентрация раствора травителя, моль/дм ³	Скорость	Скорость	Разница в скоростях
	травления	травления	травления
	необлученного	облученного	необлученного и
	участка образца,	участка образца,	облученного участков,
	мкм/с	мкм/с	мкм/с
0,005	0,723	0,014	0,709
0.001	0.025	0.020	0,005

Таблица 1. Скорость и селективность кислотного травления пленок $V_2O_5: MoO_3$.

Микрорельеф смешаннооксидных слоев MoO_3/V_2O_5 , который затруднительно идентифицировать при электронно-микроскопическом исследовании, удается выявить в результате анализа данных, полученных с помощью атомно-силовой микроскопии (см. рис. 1).

Анализ атомно-силовых изображений, позволяющий вскрыть скрытую микрогеометрию, позволил выявить характерную волнообразную наноструктуру поверхности свежесформированных смешаннооксидных пленок, более выраженную в одном направлении (см. рис. 1 в).

Результатом облучения смешаннооксидных слоев является усложнение микрогеометрии их поверхности с потерей

преимущественного направления, что может рассматриваться в качестве доказательства реализации твердофазной полимеризации смешаннооксидных агломератов, входящих в состав пленки, по 3*D*механизму. Указанные изменения рельефа, как показало выполненное исследование, в значительной мере нивелируются при кислотном травлении (см. рис. 2), что свидетельствует о локализации процессов растворения преимущественно на поверхностных дефектах (выступах, ступеньках).

Рис. 1. Электронно-микроскопическое (а) и атомно-силовое (б) изображения, а также профиль поверхности (в) в отмеченном линиями на атомно-силовом изображении направлении для свежеполученной пленки MoO_3 / V_2O_5 . На изображениях, полученных методом атомно-силовой микроскопии, предварительно с помощью программы Gwyddion [13] было проведено полиномиальное удаление виртуальной подложки. На электронно-микроскопических микрофотографиях с целью демонстрации сфокусированности изображения зафиксированы участки пленки, имеющие случайные дефекты.

В процессе облучения смешаннооксидных пленок *MoO*₃ /*V*₂*O*₅ среднее отклонение профиля их поверхности растет более чем в ~1,5 раза. Последнее, можно предположить, является результатом агломерации поверхностных зерен, нивелирование вклада которых может быть

осуществлено только благодаря избирательному кислотному травлению (см. рис. 3).

Рис. 2. Атомно-силовые изображения и профили рельефа поверхности пленок MoO_3 / V_2O_5 после облучения (а) и после травления (б).

Отчетливо детектируемые на поверхности смешаннооксидных слоев зерна (см. рис. 4) являются структурно неоднородными, что позволяет обнаружить в их составе более мелкие элементы, характеризующиеся четкой огранкой (псевдокристаллиты), количество и размер которых как по мере облучения, так и при травлении образцов резко возрастает. Последнее позволяет предположить, что в процессе экспонирования происходит твердофазная рекристаллизации оксидной пленки, результатом чего является появление скрытой внутренней структуры, обнажение которой происходит в процессе травления.

Такой анализ изменения характера структурной организации поверхностных зерен смешаннооксидных слоев МоО₃ / V₂O₅ является весьма информативным. Так, агломерация зерен в свежеполученных пленках является более развитой в одном направлении, что, как можно обусловлено лентообразной предположить, структурой смешаннооксидных агломератов, входящих в ее состав. В процессе облучения, благодаря 3*D*-сшивке, происходит потеря преимущественного направления локализации агломератов зерен, в то время как в процессе избирательного травления наблюдается их последующее дробление.

Рис. 3. Профили рельефа поверхности (диагональное направление) свежеполученной пленки MoO_3 / V_2O_5 (а), пленки после УФ-экспонирования (б) и экспонированной пленки после 6-минутного травления в 0,005 М растворе уксусной кислоты (в).

Отметим, что вышеописанные процессы не затрагивают тонкую структуру пленки, результатом чего является небольшое изменение фрактальной размерности ее поверхности (см. Таблицу 2).

Таблица 2. Структурно-морфологические характер	ристики пленок $V_2O_5: MoO_3$.
--	----------------------------------

Образец	Свежеполученная пленка	Пленка после УФ- экспонирования	Экспонированная пленка после травления
Размер зерна, нм	63,2	275,8	198,3
Фрактальная			
размерность	2,3	2,1	2,3
поверхности			

Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. – 2023. – Вып. 15

Рис. 4. Результат поиска зерен (а-в) и кристаллитов (г-е) на поверхности свежеполученной (а, г) пленки MoO_3 / V_2O_5 , пленки после УФ-экспонирования (б, д) и экспонированной пленки после 6-минутного травления в 0,005 М растворе уксусной кислоты (в, е).

С другой стороны, все вышеописанные топохимические процессы

определяют исключительно многофакторный характер формирования поверхности оксидных пленок, результатом чего является небольшое снижение фрактальной размерности поверхности в процессе актиничного облучения оксидного слоя с восстановлением микрорельефа, близкого к исходному, в процессе кислотного травления.

3. Заключение

Таким образом, выполненное методом атомно-силовой микроскопии исследование показало, что микрорельеф поверхности смешаннооксидных ванадия-молибдена (при пленок мольном соотношении оксидных составляющих 3:2) характеризуется ярко выраженной асимметрией, обусловленной преимущественно однонаправленным расположением упорядоченных зерен, представляющих собой сросшиеся нанометровые процессе экспонирования кристаллиты. В сложнооксидных слоев наблюдается усложнение поверхностного микрорельефа, а также рост вырождения размера структурных элементов в двух направлениях, что приводит к уменьшению фрактальной размерности поверхности. В то же время процесс кислотного травления предварительно экспонированных участков смешаннооксидных слоев осуществляется преимущественно по дефектам поверхности (выступам, зернам, ступенькам), результатом чего является обнажение нанокристаллитной составляющей оксидного слоя с приближением характеристик микрогеометрии поверхности к исходным Последнее обстоятельство обеспечивает значениям. формирование ровного края при травлении фоторезиста и получении микрорисунка (маски).

Работа выполнена при финансовой поддержке Министерства образования Республики Беларусь в рамках государственной программы научных исследований «Фотоника и электроника для инноваций» (задание 3.11.4 «Разработка физико-технологических методов целенаправленной модификации и контроля маскирующих слоев на основе неорганических полимеров для создания новых радиационно-стойких фоторезистов» (№ 20212675 государственной регистрации).

Библиографический список:

3. Luo, C. Review of recent advances in inorganic photoresists / C. Luo, C. Xu, L. Lv et al. // RSC Advances. – 2020. – V. 10. – I. 14. – P. 8385-8395. DOI: 10.1039/C9RA08977B.

6. Барабошина, А.А. Неорганические фоторезисты на основе смешанных оксидов молибдена и ванадия /

^{1.} Liu, B. Sub-100 nm nanolithography and pattern transfer on compound semiconductor using sol-gel-derived TiO₂ resist / B. Liu, S.-T. Ho. // Journal of The Electrochemical Society. $-2008. - V. 155 - N_{\odot} 5. - P. 57-60.$ DOI: 10.1149/1.2883730.

^{2.} Chudnovskii, F.A. Metal-insulator transition in disordered VO_2 / F.A. Chudnovskii, G.B. Stefanovich // Journal of Solid State Chemistry. – 1992. – V. 98. – I. 1. – P. 137-145. DOI: 10.1016/0022-4596(92)90079-B.

^{4.} **Ito**, **E.** TeO_x-based film for heat-mode inorganic photoresist mastering / E. Ito, Y. Kawaguchi, M. Tomiyama et al. // Japanese journal of applied physics. – 2005. – V. 44. – № 5S. – P. 3574. DOI: 10.1143/JJAP.44.3574.

^{5.} Van Zant, P. Microchip fabrication: a practical guide to semiconductor processing / P. Van Zant. – New York: McGraw-Hill, 1997. – 623 p.

А.А. Барабошина, Т.В. Свиридова, Л.С. Цыбульская и др. // Доклады Национальной академии наук Беларуси. – 2015. – Т. 59. – №. 4. – С. 68-71.

7. Sinclair, W.R. Iron oxide – an inorganic photoresist and mask material / W.R. Sinclair, D.L. Rousseau, J.J. Stancavish // Journal of The Electrochemical Society. – 1974. – V. 121. – \mathbb{N} 7. – P. 925-928. DOI: 10.1149/1.2401954.

8. Свиридова, Т.В. Фотоиндуцированные процессы в тонких пленках MoO₃ и смешанного оксида V₂O₅: MoO₃ / Т.В. Свиридова, Л.Ю. Садовская, А.И. Кокорин и др. // Химическая физика. – 2016. – Т. 35. – №. 7. – С. 3-8. DOI: 10.7868/S0207401X16070128.

9. **Sviridova, T.V.** Nano- and microcrystals of molybdenum trioxide and metal-matrix composites on their basis / T.V. Sviridova, L.I. Stepanova, D.V. Sviridov // In: Molybdenum: characteristics, production and applications; ed. by M. Ortiz et al. – New York: Nova Science Publishers, 2012. – P.147-179.

10. Livage, J. Sol-gel chemistry of transition metal oxides / J. Livage, M. Henry, C. Sanchez // Progress in Solid State Chemistry. – 1988. – V. 18. – I. 4. – P. 259-341. DOI: 10.1016/0079-6786(88)90005-2.

11. **Byk, T.V.** Photochemical selective deposition of nickel using a TiO_2-Pd^{2+} layer / T.V. Byk, V.G. Sokolov, T.V. Gaevskaya et al. // Journal of Photochemistry and Photobiology A: Chemistry. – 2008. – V. 193. – I. 1. – P. 56-64. DOI: 10.1016/j.jphotochem.2007.06.007.

12. Carls, J.C. Deep ultraviolet photoresist based on tungsten polyoxometalates and poly (vinyl alcohol) for bilayer photolithography / J.C. Carls, P. Argitis, A. Heller // Journal of the Electrochemical Society. – 1992. – V. 139. – N $_{2}$ 3. – P. 786-793. DOI: 10.1149/1.2069303.

13. Gwyddion - Free SPM (AFM, SNOM/NSOM, STM, MFM, ...) data analysis software. - Режим доступа: www.url: http://gwyddion.net. - 15.08.2023.

References:

1. Liu B., Ho S.-T. Sub-100 nm nanolithography and pattern transfer on compound semiconductor using sol-gelderived TiO₂ resist, *Journal of The Electrochemical Society*, 2008, vol. 155, no 5, pp. 57-60. DOI: 10.1149/1.2883730.

2. Chudnovskii F.A., Stefanovich G.B. Metal-insulator transition in disordered VO₂, *Journal of Solid State Chemistry*, 1992, vol. 98, issue 1, pp. 137-145. DOI: 10.1016/0022-4596(92)90079-B.

3. Luo C., Xu C., Lv L. et al. Review of recent advances in inorganic photoresists, *RSC advances*, 2020, vol. 10, issue 14, pp. 8385-8395. DOI: 10.1039/C9RA08977B.

4. Ito E., Kawaguchi Y., Tomiyama M. et al. TeO_x-based film for heat-mode inorganic photoresist mastering, *Japanese journal of applied physics*, 2005, vol. 44, no. 5S, pp. 3574-3582. DOI: 10.1143/JJAP.44.3574.

5. Van Zant P. Microchip fabrication: a practical guide to semiconductor processing, New York, McGraw-Hill, 1997, 623 p.

6. Baraboshina A.A., Sviridova T.V., Tsybulskaya L.S. et al. Neorganicheskie fotorezisty na osnove smeshannykh oksidov molibdena i vanadiya [Inorganic photoresists based on mixed oxides of molybdenum and vanadium, *Doklady Nacional'noj akademii nauk Belarusi [Doklady of the National Academy of Sciences of Belarus]*, 2015, vol. 59, no. 4, pp. 68-71. (in Russian).

7. Sinclair W.R., Rousseau D.L., Stancavish J.J. Iron oxide – an inorganic photoresist and mask material, *Journal of The Electrochemical Society*, 1974, vol. 121, no. 7, pp. 925-928. DOI: 10.1149/1.2401954.

8. Sviridova T.V., Sadovskaya L.Yu., Kokorin A.I. et al. Photoinduced processes in thin films of MoO₃ and mixed V₂O₅:MoO₃ oxides, *Russian Journal of Physical Chemistry B*, 2016, vol. 10, issue 4, pp. 561-565. DOI: 10.1134/S1990793116040126.

9. Sviridova T.V., Stepanova L.I., Sviridov D.V. Nano- and microcrystals of molybdenum trioxide and metalmatrix composites on their basis, *Molybdenum: characteristics, production and applications*, ed. by M. Ortiz et al., New York, Nova Science Publishers, 2012, pp. 147-179.

10. Livage J., Henry M., Sanchez C. Sol-gel chemistry of transition metal oxides, *Progress in Solid State Chemistry*, 1988, vol. 18, issue 4, pp. 259-341. DOI: 10.1016/0079-6786(88)90005-2.

11. Byk T.V., Sokolov V.G., Gaevskaya T.V. et al. Photochemical selective deposition of nickel using a TiO₂–Pd²⁺ layer, *Journal of Photochemistry and Photobiology A: Chemistry*, 2008, vol. 193, issue 1, pp. 56-64. DOI: 10.1016/j.jphotochem.2007.06.007.

12. Carls J.C., Argitis P., Heller A. Deep ultraviolet photoresist based on tungsten polyoxometalates and poly (vinyl alcohol) for bilayer photolithography, *Journal of the Electrochemical Society*, 1992, vol. 139, no. 3, pp. 786-793. DOI: 10.1149/1.2069303.

13. Gwyddion - Free SPM (AFM, SNOM/NSOM, STM, MFM, ...) data analysis software. Available at: www.url: http://gwyddion.net (accessed 15.09.2021).

Original paper

MECHANISM BEHIND STRUCTURAL CHANGES ACCOMPANING THE SOLID-STATE POLYMERIZATION IN THE MOLYBDENUM-VANADIUM MIXED OXIDE FILMS

T.V. Sviridova, Z.A. Yakubovskaya, V.B. Odzhaev, D.V. Sviridov

Belarusian State University, Minsk, Belarus

DOI: 10.26456/pcascnn/2023.15.1029

Abstract: In this paper we investigate the changes in the surface topology of inorganic polymerderived films resulted from photostimulated polymerization. With the use of the atomic-force microscopy, the surface structure changes of mixed molybdenum-vanadium oxide thin films ($V_2O_5:MoO_3 = 3:2$) resulted from the UV light-induced polymerization was investigated. The analysis of atomic-force images evidenced that the solid-state polymerization in the mixed oxide films obtained by condensation of corresponding oxoacids occurs through 3D mechanism. As the result of exposure, MoO_3/V_2O_5 films lose the intrinsic anisotropy which is due to the directional agglomeration of belt-like mixed oxide oligomers. The photopolymerization processes in the mixed oxide film yield agglomerates of nuclei built from the faceted nanometer-sized pseudocrystallites. The exposure is also accompanied with solid-state recrystallization of initially amorphous oxide resulting in the rougher relief of the exposed film. The selective acidic etching uncovers the latent structure of the film, this etching being accompanied with pseudocrystallite dispergation that results in the smoothing of the microrelief of the oxide film surface. These structural features of photosensitive mixed oxide MoO_3/V_2O_5 films facilitate their application as the inorganic photoresists.

Keywords: photopolymerization, molybdenum-vanadium mixed oxides, thin films, nanostructure, inorganic photoresists, atomic force microscopy.

Свиридова Татьяна Викторовна – д.х.н., профессор, профессор кафедры неорганической химии Белорусского государственного университета

Якубовская Злата Александровна – ассистент кафедры неорганической химии Белорусского государственного университета

Оджаев Владимир Борисович – д.ф-м.н., профессор, заведующий кафедрой физики полупроводников и наноэлектроники Белорусского государственного университета

Свиридов Дмитрий Вадимович — д.х.н., профессор, член-корреспондент НАН Беларуси, заведующий кафедрой неорганической химии Белорусского государственного университета

Tatyana V. Sviridova – Dr. Sc., Full Professor, Inorganic Chemistry Department, Belarusian State University Zlata A. Yakubovskaya – Assistant, Inorganic Chemistry Department, Belarusian State University Vladimir B. Odzhaev – Dr. Sc., Professor, Head of the Inorganic Chemistry Physics of Semiconductors and

Nanielectronics Department, Belarusian State University

Dmitry V. Sviridov – Dr. Sc., Professor, Corresponding member of National Academy of Sciences of Belarus, Head of the Inorganic Chemistry Department, Belarusian State University

Поступила в редакцию/received: 29.08.2023; после рецензирования/revised: 02.10.2023; принята/accepted: 07.10.2023.