Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009

Kinetics of laser-induced crystallization of GeTe and Ge2Sb2Te5 chalcogenide phase-change material thin films

A.A. Burtsev , A.V. Kiselev , V.A. Mikhalevsky , V.V. Ionin , A.A. Nevzorov , N.N. Eliseev , A.A. Lotin

National Research Centre «Kurchatov Institute»

DOI: 10.26456/pcascnn/2024.16.XXX

Original article

Abstract: The paper presents the results of theoretical analysis of crystallization of GeTe and Ge2Sb2Te5 thin films under the influence of pulse laser radiation. The phase transformations and the fraction of the crystalline phase was estimated on basis of the change of the probe optical reflection coefficient from the film sample surface. The formalism based on the Kolmogorov-Johnson-Mehl-Avrami theory was used to evaluate the kinetic behaviors of the phase transformation under the action of laser radiation. On the basis of experimental data of reflection changes during crystallization process of the researched materials, graphs were plotted and Avrami constants were determined. It is shown that GeTe exhibits a single step crystallization process associated with a high rate of nucleation and crystallite growth in all directions. The Ge2Sb2Te5 alloy is characterized by a two-step crystallization process with a change in the Avrami constant due to the influence of many factors such as the film geometry, sputtering characteristics, etc. Such type of crystallization is explained by the predominance of the high-stochastic nucleation.

Keywords: laser-induced crystallization, phase transitions, chalcogenides, phase-change materials, thin films, kinetics

  • Anton A. Burtsev – Researcher, National Research Centre «Kurchatov Institute»
  • Alexey V. Kiselev – Researcher, National Research Centre «Kurchatov Institute»
  • Vladimir A. Mikhalevsky – Researcher, National Research Centre «Kurchatov Institute»
  • Vitaly V. Ionin – Researcher, National Research Centre «Kurchatov Institute»
  • Alexey A. Nevzorov – Ph. D., Researcher, National Research Centre «Kurchatov Institute»
  • Nikolay N. Eliseev – Junior Researcher, National Research Centre «Kurchatov Institute»
  • Andrey A. Lotin – Ph. D., Deputy Head of the branch «ILIT-Shatura» of Crystallography and Photonics Complex, National Research Centre «Kurchatov Institute»


Burtsev , A.A. Kinetics of laser-induced crystallization of GeTe and Ge2Sb2Te5 chalcogenide phase-change material thin films / A.A. Burtsev , A.V. Kiselev , V.A. Mikhalevsky , V.V. Ionin , A.A. Nevzorov , N.N. Eliseev , A.A. Lotin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. __-__. DOI: 10.26456/pcascnn/2024.16.XXX. (In Russian).

Full article (in Russian): download PDF file


1. Phase change materials. science and applications, ed. by S. Raoux and M. Wutting. New York, Springer Science+Business Media, LLC, 2009, 450 p. DOI: 10.1007/978-0-387-84874-7.
2. Kolobov A.V., Tominaga J. Chalcogenides: Metastability and Phase Change Phenomena. Berlin Heidelberg, Springer-Verlag, 2012, XVI, 284 p. DOI: 10.1007/978-3-642-28705-3.
3. Wuttig M., Yamada N. Phase-change materials for rewriteable data storage, Nature materials, 2007, vol. 6, issue 11, pp. 824-832. DOI: 10.1038/nmat2009.
4. Sarwat S.G. Materials science and engineering of phase change random access memory, Materials science and technology, 2017, vol. 33, issue 16, pp. 1890-1906. DOI: 10.1080/02670836.2017.1341723.
5. Zhang W., Mazzarello R., Wuttig M., Ma E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing, Nature Reviews Materials, 2019, vol. 4, issue 3, pp. 150-168. DOI: 10.1038/s41578-018-0076-x.
6. Lian C., Vagionas C., Alexoudi T. et al. Photonic (computational) memories: tunable nanophotonics for data storage and computing, Nanophotonics, 2022, vol. 11, issue 17, pp. 3823-3854. DOI: 10.1515/nanoph-2022-0089.
7. Guo P., Sarangan A. M., Agha I. A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators, Applied sciences, 2019, vol. 9, issue 3, art. no. 530, 26 p. DOI: 10.3390/app9030530.
8. Singh K., Kumari S., Singh H. et al A review on GeTe thin film-based phase-change, Applied Nanoscience, 2023, vol. 13, issue 1, pp. 95-110. DOI: 10.1007/s13204-021-01911-7.
9. Sahoo D., Naik R. GSST phase change materials and its utilization in optoelectronic devices: A review, Materials Research Bulletin, 2022, vol. 148, art. no. 111679, 13 p. DOI: 10.1016/j.materresbull.2021.111679.
10. Bala N., Khan B., Singh K. et al. Recent advances in doped Ge2Sb2Te5 thin film based phase change memories, Materials Advances, 2023, vol. 4, issue 3, pp. 747-768. DOI: 10.1039/D2MA01047J.
11. Yang F., Tang X., Chen T., et al. Effect of Si doping on the structure and optical properties of Ge2Sb2Te5 studied by ab initio calculations, Computational Materials Science, 2019, vol. 168, pp. 253-259. DOI: 10.1016/j.commatsci.2019.05.019
12. Delaney M., Zeimpekis I., Lawson D. et al. A new family of ultralow loss reversible phase‐change materials for photonic integrated circuits: Sb2S3 and Sb2Se3, Advanced Functional Materials, 2020, vol. 30, issue 36,
art. no. 2002447, 10 p. DOI: 10.1002/adfm.202002447.
13. Wuttig M., Raoux S. The science and technology of phase change materials, Zeitschrift für anorganische und allgemeine Chemie, 2012, vol. 638, issue 15, pp. 2455-2465. DOI: 10.1002/zaac.201200448.
14. Abdollahramezani S., Hemmatyar O., Taghinejad H. et al. Tunable nanophotonics enabled by chalcogenide phase-change materials, Nanophotonics, 2020, vol. 9, issue 5, pp. 1189-1241. DOI: 10.1515/nanoph-2020-0039.
15. Kiselev A.V., Mikhalevsky V.A., Burtsev A.A. et al. Transmissivity to reflectivity change delay phenomenon observed in GeTe thin films at laser-induced reamorphization, Optics & Laser Technology, 2021, vol. 143, art. no. 107305, 6 p. DOI: 10.1016/j.optlastec.2021.107305.
16. Kiselev A.V., Ionin V.V., Burtsev A.A. et al. Dynamics of reversible optical properties switching of Ge2Sb2Te5 thin films at laser-induced phase transitions, Optics & Laser Technology, 2022, vol. 147,
art. no. 107701, 6 p. DOI: 10.1016/j.optlastec.2021.107701.
17. Huber E., Marinero E.E. Laser-induced crystallization of amorphous GeTe: A time-resolved study, Physical Review B, 1987, vol. 36, issue 3, pp. 1595-1604. DOI: 10.1103/PhysRevB.36.1595.
18. Weidenhof V., Friedrich I., Ziegler S., & Wuttig M. Laser induced crystallization of amorphous Ge2Sb2Te5 films, Journal of Applied Physics, 2001, vol. 89, issue 6, pp. 3168-3176. DOI: 10.1063/1.1351868.
19. Kolmogorov A.N. K statisticheskoj teorii kristallizatsii metallov [Zur statistik der kristallisationsvorgänge in metallen], Izvestija Akademii Nauk SSSR Serija Matematiceskaja [Proceedings of the USSR Academy of Sciences. Mathematical series], 1937, vol. 1, issue 3, pp. 355-359. (In Russian, German summary).
20. Avrami M. Kinetics of phase change. II Transformation‐time relations for random distribution of nuclei, The Journal of Chemical Physics, 1940, vol. 8, issue 2, pp. 212-224. DOI: 10.1063/1.1750631.
21. Christian J.W. The theory of transformations in metals and alloys, 3rd ed. Oxford, Pergamon, 2002, vol. 1-2, 1200 p. DOI: 10.1016/B978-0-08-044019-4.X5000-4.
22. Andreeva L.V., Novoselova A.S., Lebedev-Stepanov P.V. et al. Crystallization of solutes from droplets, Technical Physics, 2007, vol. 52, issue 2, pp. 164-172. DOI: 10.1134/S1063784207020041.
23. Burtsev A.A., Butkovskii O.Ya. Analiz kristallicheskikh struktur na poverkhnosti nerzhaveyushchej stali [Analysis of crystal structures on stainless steel surface], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 107-114. DOI: 10.26456/pcascnn/2019.11.107. (In Russian).
24. Lu Q.M., Libera M. Microstructural measurements of amorphous GeTe crystallization by hot‐stage optical microscopy, Journal of Applied Physics, 1995, vol. 77, issue 2, pp. 517-521. DOI: 10.1063/1.359034
25. Zhou G.F. Materials aspects in phase change optical recording, Materials Science and Engineering: A, 2001, vol. 304-306, pp. 73-80. DOI: 10.1016/S0921-5093(00)01448-9.
26. Yang I., Do K., Chang H.J. et al. Effect of doped nitrogen on the crystallization behaviors of Ge2Sb2Te5, Journal of The Electrochemical Society, 2010, vol. 157, no. 4, pp. H483-H486. DOI 10.1149/1.3321759.
27. Do K., Lee D., Sohn H. et al. Crystallization behaviors of laser induced Ge2Sb2Te5 in different amorphous states, Journal of The Electrochemical Society, 2010, vol. 157, no. 3, pp. H264-H267. DOI 10.1149/1.3274225.
28. Ruitenberg G., Petford-Long A.K., Doole R.C. Determination of the isothermal nucleation and growth parameters for the crystallization of thin Ge2Sb2Te5 films, Journal of Applied Physics, 2002, vol. 92, issue 6, pp. 3116-3123. DOI 10.1063/1.1503166.

Content |