Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Investigation of the effect of titanium and zirconium oxides on the strength characteristics of nanoscale hydroxyapatite

K.I. Sabanin1, V.M. Skachkov2, I.S. Medyankina2, E.A. Bogdanova2,3, N.A. Sabirzyanov2

1 Ural Federal University named after the first President of Russia B.N. Yeltsin
2 Institute of Solid State Chemistry of the Ural Branch of RAS
3 JSC Giredme

DOI: 10.26456/pcascnn/2024.16.981

Original article

Abstract: The article discusses the possibility of dispersion strengthening of nanostructured hydroxyapatite synthesized by precipitation from solution introducing reinforcing additives of non-stoichiometric titanium oxide and zirconium dioxide. The reinforced composite material: hydroxyapatite – non-stoichiometric titanium oxide – zirconium dioxide was obtained by mechanochemical synthesis of hydroxyapatite with doping components followed by annealing at 1000°C. The initial components and synthesized samples were certified using modern physicochemical methods of analysis: X-ray phase analysis, differential thermal analysis, scanning electron microscopy, surface area and porosity analysis, dispersion analysis. The influence of the qualitative and quantitative composition of the composite on the sintering processes and strength characteristics of the studied samples in a wide temperature range of 25-1200°C is shown. It has been experimentally established that the most promising system for developing biocomposites based on it ishydroxyapatite – 15% non-stoichiometric titanium oxide – 5% zirconium dioxide. Composite materials of this composition have a dense, uniform, strong structure with a high degree of crystallinity and a developed surface. They seem to be promising materials for further research with the aim of introducing it into medical practice.

Keywords: hydroxyapatite, titanium oxide, zirconium oxide, sintering, composite biomaterials, microhardness

  • Kirill I. Sabanin – 4th year student, Department of Experimental Physics, Ural Federal University named after the first President of Russia B.N. Yeltsin
  • Vladimir M. Skachkov – Ph. D., Senior Researcher, Laboratory of Heterogeneous Processes Chemistry, Institute of Solid State Chemistry of the Ural Branch of RAS
  • Irina S. Medyankina – Researcher, Laboratory of Promising and Functional Materials for Chemical Current Source, Institute of Solid State Chemistry of the Ural Branch of RAS
  • Ekaterina A. Bogdanova – Ph. D., Senior Researcher, Laboratory of Heterogeneous Processes Chemistry, Institute of Solid State Chemistry of the Ural Branch of RAS, Leading Researcher, Laboratory of Electrochemical Devices for Hydrogen Energy JSC Giredme
  • Nail A. Sabirzyanov – Dr. Sc., Chief Researcher, Head of the Laboratory of Heterogeneous Processes Chemistry, Institute of Solid State Chemistry of the Ural Branch of RAS

Reference:

Sabanin, K.I. Investigation of the effect of titanium and zirconium oxides on the strength characteristics of nanoscale hydroxyapatite / K.I. Sabanin, V.M. Skachkov, I.S. Medyankina, E.A. Bogdanova, N.A. Sabirzyanov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 981-994. DOI: 10.26456/pcascnn/2024.16.981. (In Russian).

Full article (in Russian): download PDF file

References:

1. Adhikara G., Maharani A.P., Puspitasari A. et al. Bovine hydroxyapatite for bone tissue engineering: preparation, characterization, challenges, and future perspectives, European Polymer Journal, 2024, vol. 214, art. no. 113171, 12 p. DOI: 10.1016/j.eurpolymj.2024.113171.
2. Pilliar R.M., Filiaggi M.J., Wells J.D. et al. Porous calcium polyphosphate scaffolds for bone substitute applications – in vitro characterization, Biomaterials, 2001, vol. 22, issue 9, pp. 963-972. DOI: 10.1016/S0142-9612(00)00261-1.
3. Khalid H., Chaudhry A.A. 4 - Basics of hydroxyapatite—structure, synthesis, properties, and clinical applications, Handbook of Ionic Substituted Hydroxyapatites, ed. by A.S. Khan, A.A. Chaudhry, Woodhead Publishing Series in Biomaterials. Cambridge, Woodhead Publishing, 2020, pp. 85-115. DOI: 10.1016/B978-0-08-102834-6.00004-5.
4. Câmara G.I.F., do L.L.R. Menezes M., Vasconcelos N.F. et al. Biocomposite based on nanoscale calcium phosphate and collagen from Nile tilapia (Oreochromis niloticus) skin: properties and morphological features, Materials Letters, 2020, vol. 279, art. no. 128441, 4 p. DOI: 10.1016/j.matlet.2020.128441.
5. Ofudje E.A., Rajendran A., Adeogun A.I. et al. Synthesis of organic derived hydroxyapatite scaffold from pig bone waste for tissue engineering applications, Advanced Powder Technology, 2018, vol. 29, issue 1, pp. 1-8. DOI: 10.1016/j.apt.2017.09.008.
6. Ramesh S., Loo Z.Z., Tan C.Y. et al. Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications, Ceramics International, 2018, vol. 44, issue 9, pp. 10525-10530. DOI: 10.1016/j.ceramint.2018.03.072.
7. Barinov S.M., Komlev V.S. Biokeramika na osnove fosfatov kal'tsiya [Calcium phosphate bioceramics]. Moscow, Nauka Publ., 2006, 204 p. (In Russian).
8. Zhou H., Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomaterialia, 2011, vol. 7, issue 7, pp. 2769-2781. DOI: 10.1016/j.actbio.2011.03.019.
9. Wang H.X., Guan S.K., Wang X. et al. In vitro degradation and mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process, Acta Biomaterialia, 2010, vol. 6, issue 5, pp. 1743-1748. DOI: 10.1016/j.actbio.2009.12.009.
10. John K.S. 2 - Mechanical biocompatibility of dental materials. Biocompatibility of dental biomaterials, Biocompatibility of Dental Biomaterials, ed. by R. Shelton, Woodhead Publishing Series in Biomaterials. Cambridge, Woodhead Publishing, 2017, pp. 9-21. DOI: 10.1016/B978-0-08-100884-3.00002-3.
11. Placido F., McLean A., Ogwu A.A., Ademosu W. Titanium dioxide coatings for medical devices, Surgical Tools and Medical Devices, ed. by M.J. Jackson, W. Ahmed. Cham, Springer, 2016, pp. 81-91. DOI: 10.1007/978-3-319-33489-9_3.
12. Rempel S.V., Eselevich D.A., Gerasimov E.Yu., Valeeva A.A. Impact of titanium monoxide stoichiometry and heat treatment on the properties of TiOy/HAp nanocomposite, Journal of Alloys and Compounds, 2019, vol. 800, pp. 412-418. DOI: 10.1016/j.jallcom.2019.06.057.
13. Farzin A., Ahmadian M., Fathi M.H. Comparative evaluation of biocompatibility of dense nanostructured and microstructured Hydroxyapatite/Titania composites, Materials Science and Engineering: C, 2013, vol. 33, issue 4, pp. 2251-2257. DOI: 10.1016/j.msec.2013.01.053.
14. Khalajabadi S.Z., Ahmad N., Izman S. et al. In vitro biodegradation, electrochemical corrosion evaluations and mechanical properties of an Mg/HA/TiO2 nanocomposite for biomedical applications, Journal of Alloys and Compounds, 2017, vol. 696, pp. 768-781. DOI: 10.1016/j.jallcom.2016.11.106.
15. He Y., Zhang Y., Jiang Y. et al. Microstructure evolution, electrochemical properties and in-vitro properties of Ti-Nb-Zr based biocomposite by hydroxyapatite bioceramic, Journal of Alloys and Compounds, 2018, vol. 764, pp. 987-1002. DOI: 10.1016/j.jallcom.2018.06.132.
16. Prasad V.J.S.N., Mayanglambam F., Pramila Rani P.N.V.V.L., Dobbidi P. Silver-doped ZrO2-TiO2 nanocomposite coatings on 316L stainless steel for enhanced corrosion resistance and bio applications, Surface and Coatings Technology, 2024, vol. 493, part 1, art. no. 131203, 14 p. DOI: 10.1016/j.surfcoat.2024.131203.
17. Samanipour F., Bayati M.R., Zargar H.R. et al. Electrophoretic enhanced micro arc oxidation of ZrO2–HAp–TiO2 nanostructured porous layers, Journal of Alloys and Compounds, 2011, vol. 509, issue 38, pp. 9351-9355. DOI: 10.1016/j.jallcom.2011.07.035.
18. Naji Q.K., Salman J.M., Dawood N.M. Investigations of structure and properties of layered bioceramic HA/TiO2 and ZrO2/TiO2 coatings on Ti-6Al-7Nb alloy by micro-arc oxidation, Materials Today Proceedings, 2022, vol 61, part 3, pp. 786-793. DOI: 10.1016/j.matpr.2021.09.038.
19. Bogdanova E.A., Skachkov, Nefedova K.V. Poluchenie biokomozitov na osnove nanorazmernogo gidroksiapatita s soedineniyami titana [Preparation of biocomposites based on nanoscale hydroxyapatite with titanium compounds], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 521-530. DOI: 10.26456/pcascnn/2022.14.521. (In Russian).
20. Bogdanova E.A., Giniyatullin I.М., Pereverzev D.I., Razgulyaeva V.М. Vliyanie armiruyushchikh dobavok na protsessy spekaniya i uprochneniya nanorazmernogo gidroksiapatita [Influence of reinforcement additives on sintering and hardening processes of nanoscale hydroxyapatite], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 548-554. DOI: 10.26456/pcascnn/2019.11.548. (In Russian).
21. Sabirzyanov N.A., Bogdanova E.A., Khonina T.G. Sposob polucheniya suspenzii gidroksiapatita [A method of obtaining a suspension of hydroxyapatite]. Patent RF, no. 2406693, 2010. (In Russian).
22 Sabirzyanov N.A., Bogdanova E.A., Skachkov V.M. Sposob polucheniya suspenzii apatita [Method of preparing apatite suspension]. Patent RF, no. 2652193, 2018. (In Russian).
23. Bogdanova E.A., Skachkov V.М., Medyankina I.S. et al. Formation of nanodimensional structures in precipitated hydroxyapatite by fluorine substitution, SN Applied Sciences, 2020, vol. 2, issue 9, art. no. 1565, 7 p. DOI: 10.1007/s42452-020-03388-5.

⇐ Prevoius journal article | Content | Next journal article ⇒