Sorption of La3+ cations by zeolites from aqueous solutions
Yu.V. Rekh1, S.A. Bibanaeva2, M.S. Valova1, V.M. Skachkov2, O.V. Fedorova1, N.A. Sabirzyanov2
1 I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of RAS
2 Institute of Solid State Chemistry of the Ural Branch of RAS
DOI: 10.26456/pcascnn/2024.16.960
Original article
Abstract: It is shown that the sorption of lanthanum cations by synthetic aluminosilicate zeolite, unlike natural ones, increases both in acidic and neutral conditions by 4 times (from 8 to 26%) and 8 times (from 4 to 33%), and the sorption capacity increases by 3-8 times to 145 and 184 mg/g, respectively. A comparative analysis of the applicability of the adsorption of Langmuir, Freundlich, Temkin, Dubinin-Radushkevich models to describe experimental isotherms of adsorption of lanthanum cations on synthetic zeolite is made. It is shown that the Langmuir model is best suited in aqueous media (R2 = 0,9996). This indicates that a homogeneous monolayer surface is formed as a result of sorption. Based on the pseudo-first, pseudo-second order models and the intraparticle diffusion model, an assumption is made about the ion-exchange nature of sorption. It has been shown that zeolites can almost quantitatively extract La3+ cations from aqueous solutions and are of interest as sorbents with a high sorption capacity.
Keywords: sorption, purification, sorption activity, synthetic zeolite, aluminosilicate, lanthanum, Langmuir model
- Yuliya V. Rekh – Laboratory Engineer, Laboratory of Heterocyclic Compounds, I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of RAS
- Svetlana A. Bibanaeva – Researcher, Laboratory of Heterogeneous Processes in Chemistry, Institute of Solid State Chemistry of the Ural Branch of RAS
- Marina S. Valova – Ph. D., Researcher, Laboratories of Medical Chemistry, I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of RAS
- Vladimir M. Skachkov – Ph. D., Senior Researcher, Laboratory of Heterogeneous Processes in Chemistry, Institute of Solid State Chemistry of the Ural Branch of RAS
- Olga V. Fedorova – Ph. D., Senior Researcher, Laboratory of Heterocyclic Compounds, I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of RAS
- Nail A. Sabirzyanov – D. Sc., Chief Researcher, Laboratory of Heterogeneous Processes in Chemistry, Institute of Solid State Chemistry of the Ural Branch of RAS
Reference:
Rekh, Yu.V. Sorption of La3+ cations by zeolites from aqueous solutions / Yu.V. Rekh, S.A. Bibanaeva, M.S. Valova, V.M. Skachkov, O.V. Fedorova, N.A. Sabirzyanov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 960-970. DOI: 10.26456/pcascnn/2024.16.960. (In Russian).
Full article (in Russian): download PDF file
References:
1. Weitkamp J. Zeolites and catalysis, Solid State Ionics, 2000, vol. 131, issue 1-2, pp. 175-188. DOI: 10.1016/s0167-2738(00)00632-9.
2. Tolmachev A.M., Nikashina V.A. Ionoobmennye svojstva i primenenie sinteticheskikh i prirodnykh tseolitov [Ion exchange properties and application of synthetic and natural zeolites], Ionnyj obmen [Ion exchange], ed. M.M. Senyavin, Moscow, Nauka Publ., 1981, pp. 45-63. (In Russian).
3. Bacakova L., Vandrovcova M., Kopova I., Jirka I. Applications of zeolites in biotechnology and medicine – a review, Biomaterials Science, 2018, vol. 6, issue 5, pp. 974-989. DOI: 10.1039/c8bm00028j.
4. Eroglu N., Emekci M., Athanassiou C.G. Applications of natural zeolites on agriculture and food production, Journal of the Science of Food and Agriculture, 2017, vol. 97, issue 11, pp. 3487-3499. DOI: 10.1002/jsfa.8312.
5. Sultanbayeva G.S., Holze R., Chernyakova R.M., Jussipbekov U.Z. Removal of Fe2+, Cu2+, Al3+ and Pb2+ ions from phosphoric acid by sorption on carbonate-modified natural zeolite and its mixture with bentonite, Microporous and Mesoporous Materials, 2023, vol. 170, pp. 173-180. DOI: 10.1016/j.micromeso.2012.11.022.
6. Abdel-Magied A.F., Hani N.A., Radwa M.A. et al. Hierarchical porous zeolitic imidazolate frameworks nanoparticles for efficient adsorption of rare-earth, Microporous and Mesoporous Materials, 2019, vol. 278, pp. 175-184. DOI: 10.1016/j.micromeso.2018.11.022.
7. Aissa A., Debbabi M., Gruselle M. et al. Covalent modification of calcium hydroxyapatite surface by grafting phenyl phosphonate moieties, Solid State Chemistry, 2007, vol. 180, issue 8, pp. 2273-2278. DOI: 10.1016/j.jssc.2007.05.016.
8. Dampilova B.V., Zonkhoeva E.L. Ravnovesie i kinetika sorbtsii ionov lantana na prirodnykh tseolitakh [Equilibrium and kinetics of sorption of ions of lantan on natural zeolites], Sorbtsionnye I Khromatograficheskie Protsessy [Sorption and chromatography processes], 2019, vol. 19, no. 3, pp.325-333. DOI: 10.17308/sorpchrom.2019.19/749. (In Russian).
9. Fedorov Yu.S., Samonin V.V., Zotov A.S. et al. Sorbtsiya NdF3 i ThF4 aktivirovannymi uglyami i tseolitami iz rasplava LiF-NaF-KF [Sorption of NdF3 and ThF4 with activated carbons and zeolites from LiF-NaF-KF molten salts], Radiokhimiya [Radiochemistry], 2022, vol. 64, no. 3, pp. 241-247. DOI: 10.31857/S0033831122030066. (In Russian).
10. Bibanaeva S.A., Bogdanova E.A., Skachkov V.M. Sintez i issledovanie funktsional’nykh kharakteristik kompozitsionnykh materialov na osnove nanorazmernogo gidroksiapatita i sinteticheskikh tseolitov [Synthesis and investigation of functional characteristics of composite materials based on nanoscale hydroxyapatite and synthetic zeolites], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 913-923. DOI: 10.26456/pcascnn/2023.15.913. (In Russian).
11. Seisenbaeva G. A., Lamiaa M.A.Ali, Vardanyan A. et al. Mesoporous silica adsorbents modified with amino polycarboxylate ligands – functional characteristics, health and environmental effects, Journal of Hazardous Materials, 2021, vol. 406, issue 4, art. no. 124698, 16 p. DOI: 10.1016/j.jhazmat.2020.124698.
12. Cheng J., Hua X., Zhang G. et al. Synthesis of high-crystallinity Zeolite A from rare earth tailings: investigating adsorption performance on typical pollutants in rare earth mines, Hazardous Materials, 2024, vol. 486, art. no. 124698, 12 p. DOI: 10.1016/j.jhazmat.2024.133730.
13. Bibanaeva S.A. Sintez alyumosilikatnykh tseolitov v usloviyakh glinozemnogo proizvodstva [Synthesis of aluminosilicate zeolites in the conditions of alumina production], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 747-753. DOI: 10.26456/pcascnn/2022.14.747. (In Russian).
14. Bibanaeva S.A., Skachkov V.M. Sorbtsiya tyazhelykh metallov iz vodnykh rastvorov sinteticheskimi tseolitami [Sorption of heavy metals from aqueous solutions with synthetic zeolites], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 924-929. DOI: 10.26456/pcascnn/2023.15.924. (In Russian).
15. Bibanaeva S.A., Skachkov V.M., Sabirzyanov N.A. Sposob polucheniya sinteticheskogo alyumosilikatnogo tseolita [Method for producing synthetic aluminosilicate zeolite]. Patent RF, no. 2780972, 2022. (In Russian).
16. Hogendoorn С., Roszczenko-Jasińska P., Martinez-Gomez N.C. et al. Facile Arsenazo III-based assay for monitoring rare earth element depletion from cultivation media for methanotrophic and methylotrophic bacteria, Applied and Environmental Microbiology, 2018, vol. 84, no. 8, art. no. e02887-17, 9 p. DOI: 10.1128/AEM.02887-17.
17. Adsorption from solution at the solid/liquid interface, ed. by G.D. Parfitt, C.H. Rochester, London, New York, Academic Press, 1983, XI+416 p.
18. Al-Yaari M., Salehb T.A., Saber O.M. Removal of mercury from polluted water by a novel composite of polymer carbon nanofiber: kinetic, isotherm, and thermodynamic studies, The Royal Society of Chemistry, 2021, vol. 11, issue 1, pp. 380-389. DOI: 10.1039/d0ra08882j.
19. Нo Y.S., Ng J.C.Y., McKay G. Kinetics of pollutant sorption by biosorbents: review, Separation and Purification Methods, 2000, vol. 29, issue 2, p. 189-232. DOI: 10.1081/spm-100100009.
20. Cheung W.H., Ng J.C.Y., McKay G. Kinetic analysis of the sorption of copper (II) ions on chitosan, Journal of Chemical Technology and Biotechnology, 2003, vol. 78, issue 5, p. 562-571. DOI: 10.1002/jctb.836.