Release of cisplatin from bioinert templates in mixture with hydroxyapatite
V.K. Krut’ko1, L.Yu. Maslova1, V.A. Suchok2, O.N. Musskaya1, A.I. Kulak1
1 Institute of General and Inorganic Chemistry of the NAS of Belarus
2 Limited Liability Company «Medbiotech»
DOI: 10.26456/pcascnn/2024.16.922
Original article
Abstract: The dynamics of cisplatin release and its mixture with hydroxyapatite from bioinert templates based on carbon felt and polyethylene were studied. Changing the polyethylene and carbon felt layer ratio in the templates influenced the volumetric concentration of cisplatin and the duration of its release. The diffusion of cisplatin from the samples was limited by the number of polyethylene layers. After crystallization at 800°C, the phase composition of hydroxyapatite-α is 65% hydroxyapatite and 35% α-tricalcium phosphate, and hydroxyapatite-αβ consists of 50% hydroxyapatite, 35% α- and 15% β-tricalcium phosphate. Long-term (44 days) release was observed in templates with 2-3 layers of carbon felt and 3-4 layers of polyethylene, and it was slowed when using mixtures with hydroxyapatite (58 days). The appending of hydroxyapatite/cisplatin mixtures into the template with varying amounts of hydroxyapatite phases and α-/β-tricalcium phosphates slowed the release of cisplatin by 14 days, totaling 58 days, due to the sorption and/or binding of cisplatin to calcium phosphates.
Keywords: cisplatin, hydroxyapatite, tricalcium phosphate, carbon felt, bioinert template, release
- Valentina K. Krut’ko – Ph. D., Assistant Professor, Head of the Laboratory of Photochemistry and Electrochemistry, Institute of General and Inorganic Chemistry of the NAS of Belarus
- Lyubov Yu. Maslova – Junior Researcher, Photochemistry and Electrochemistry Laboratory, Institute of General and Inorganic Chemistry of the NAS of Belarus
- Valeryia A. Suchok – Сhemical Engineer, Composites Research and Manufacturing Laboratory, Limited Liability Company «Medbiotech»
- Olga N. Musskaya – Ph. D., Assistant Professor, Leading Researcher, Photochemistry and Electrochemistry Laboratory, Institute of General and Inorganic Chemistry of the NAS of Belarus
- Anatoly I. Kulak – Academician, D. Sc., Professor, Director, Institute of General and Inorganic Chemistry of the NAS of Belarus
Reference:
Krut’ko, V.K. Release of cisplatin from bioinert templates in mixture with hydroxyapatite / V.K. Krut’ko, L.Yu. Maslova, V.A. Suchok, O.N. Musskaya, A.I. Kulak // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 922-932. DOI: 10.26456/pcascnn/2024.16.922. (In Russian).
Full article (in Russian): download PDF file
References:
1. Furue H. Chemotherapy cancer treatment during the past sixty years, Japanese Journal of Cancer and Chemotherapy, 2003, vol. 30, issue 10, pp. 1404-1411.
2. Hryniuk W.M., Figueredo A., Figueredo M., Goodyear M. Applications of dose intensity to problems in chemotherapy of breast and colorectal cancer, Seminars in Oncology, 1987, vol. 14, issue 4, supplement 4, pp. 3-11.
3. Undevia S.D., Gomez-Abuin G., Ratain M.J. Pharmacokinetic variability of anticancer agents, Nature Reviews Cancer, 2005, vol. 5, issue 6, pp. 447-458. DOI: 10.1038/nrc1629.
4. Veselov V.V., Nosyrev A.E., Jicsinszky L. et al. Targeted delivery methods for anticancer drugs, Cancers (Basel), 2022, vol. 14, issue 3, art. no. 622, 28 p. DOI: 10.3390/cancers14030622.
5. Dasari S., Tchounwou P.B. Cisplatin in cancer therapy: molecular mechanisms of action, European Journal of Pharmacology, 2014, vol. 740, pp. 364-378. DOI: 10.1016/j.ejphar.2014.07.025.
6. Krut’ko V.K., Maslova L.Yu., Musskaya O.N., Kulak A.I. Formirovanie biomimeticheskogo apatita na kal'tsijfosfatnoj penokeramike v standartnom i beskarbonatnom model'nykh rastvorakh [Formation of biomimetic apatite on calcium phosphate foam ceramics in standard and carbonate-free model solutions], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 15, pp 982-991. DOI: 10.26456/pcascnn/2023.15.982. (In Russian).
7. Olton D., Li G., Wilson M.E. et al. Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: influence of the synthesis parameters on transfection efficiency, Biomaterials, 2007, vol. 28, issue. 6, pp. 1267-1279. DOI: 10.1016/j.biomaterials.2006.10.026.
8. Krut’ko V.K., Maslova L.Yu., Musskaya O.N., Kulak A.I. Kompozity na osnove kal'tsijfosfatnoj penokeramiki i gelya gidroksiapatita [Composites based on calcium phosphate foam ceramic and hydroxyapatite gel], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 791-799. DOI: 10.26456/pcascnn/2022.14.791. (In Russian).
9. Fujisaki J., Tokunaga Y., Takahashi T. et al. Osteotropic drug delivery system (ODDS) based on bisphosphonic prodrug. V. Biological disposition and targeting characteristics of osteotropic estradiol, Biological and Pharmaceutical Bulletin, 1997, vol. 20, issue 11, pp. 1183-1187. DOI: 10.1248/bpb.20.1183.
10. Miguel de L., Popa I., Noiray M. et al. Osteotropic polypeptide nanoparticles with dual hydroxyapatite binding properties and controlled cisplatin delivery, Pharmaceutical Research, 2015, vol. 32, issue 5, pp. 1794-1803. DOI: 10.1007/s11095-014-1576-z.
11. Lai Y.-L., Lin C.-C., Hsu S.-R., Yen S.-K. Electrochemical deposition of cisplatin on pure magnesium, Journal of The Electrochemical Society, 2018, vol. 165, no. 5, pp. D196-D205. DOI: 10.1149/2.0501805jes.
12. Saber-Samandari S., Nezafati N., Saber-Samandari S. The effective role of hydroxyapatite based composites in anticancer drug delivery, Critical Reviews in Therapeutic Drug Carrier Systems, 2016, vol. 33, issue 1, pp. 41-75. DOI: 10.1615/CritRevTherDrugCarrierSyst.v33.i1.30.
13. Benedetti M., Castro De F., Romano A. et al. Adsorption of the cis-[Pt(NH3)2(P2O7)](2-) (phosphaplatin) on hydroxyapatite nanocrystals as a smart way to selectively release activated cis-[Pt(NH3)2Cl2] (cisplatin) in tumor tissues, Journal of Inorganic Biochemistry, 2016, vol. 157, pp. 73-79. DOI: 10.1016/j.jinorgbio.2016.01.019.
14. Marcato P.D., Fávaro W.J., Durán N. Cisplatin properties in a nanobiotechnological approach to cancer: a mini-review, Current Cancer Drug Targets, 2014, vol. 14, issue 5, pp. 458-476. DOI: 10.2174/1568009614666140508154020.
15. Gao L., Cai S., Cai A. et al. The improved antitumor efficacy of continuous intratumoral chemotherapy with cisplatin-loaded implants for the treatment of sarcoma 180 tumor-bearing mice, Drug Delivery, 2019, vol. 26, issue 1, pp. 208-215. DOI: 10.1080/10717544.2019.1574938.
16. Shikanov A., Shikanov S., Vaisman B. et al. Cisplatin tumor biodistribution and efficacy after intratumoral injection of a biodegradable extended release implant, Chemotherapy Research and Practice, 2011, vol. 2011, issue 1, art. no. 175054, 9 p. DOI: 10.1155/2011/175054.
17. Dubkova V.A Uglevoloknistyi kompozitsionnyi material dlya ustraneniya defektov myagkikh tkanei [Сarbon fiber composite material to eliminate soft tissue defects]. Patent RB, no 21881, 2018.
18. Krut’ko V.K., Maslova L.Yu., Musskaya O.N. et al. Calcium phosphate ceramic foam obtained by firing a hydroxyapatite–monocalcium phosphate monohydrate powder mixture, Glass and Ceramics, 2022, vol. 78, issue 11, pp. 476-480. DOI: 10.1007/s10717-022-00435-y.
19. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url: https://www.icdd.com/pdf-2 (accessed 01.07.2024).
20. Barroug A., Kuhn L.T., Gerstenfeld L.C., Glimcher M.J. Interactions of cisplatin with calcium phosphate nanoparticles: in vitro controlled adsorption and release, Journal of Orthopaedic Research, 2004, vol. 22, issue 4, pp. 703-708. DOI: 10.1016/j.orthres.2003.10.016.
21. Barroug A., Glimcher M.J Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro, Journal of Orthopaedic Research, 2002, vol. 20, issue 2, pp. 274-280. DOI: 10.1016/S0736-0266(01)00105-X.