The effect of deep surface acceptor states on the temperature-dependent conductivity of zinc oxide nanoparticles
N.A. Klychkov, V.V. Simakov, I.V. Sinev
Saratov State University
DOI: 10.26456/pcascnn/2024.16.906
Original article
Abstract: An experimental and theoretical study was conducted on the temperature dependence of the conductivity of zinc oxide (ZnO) layers in dry air and ethanol. The study found that the conductivity of ZnO depends non-linearly on temperature, and its type varies depending on experimental conditions. Scanning speed directly affects the type of the temperature dependence, with a local minimum in conductivity between 250±5°C at a scanning rate of 0,4°C/min. However, monotonic dependencies are observed at slower scanning rates, such as 30°C/min, and a mechanism is proposed to explain the effect of the scanning velocity on the type of dependency. This mechanism involves the process of the thermal activation of oxygen molecules to form atomic oxygen at adsorption sites. The key idea behind this mechanism is that atomic oxygen forms deeper acceptor levels on zinc oxide surfaces compared to molecular oxygen. At a high scanning rate, the relaxation time for filling the surface with adsorbed oxygen is significantly longer than the experimental time. Therefore, metastable «frozen» states of atomic forms of adsorbed oxygen appear on the surface of zinc oxide layers. As a result, metastable «frozen» states of adsorbed atoms appear on the surface of zinc oxide layers. Based on calculations using this model, we propose a method for reducing the number of nonequilibrium atomic oxygen states by heating samples in a reducing medium.
Keywords: zinc oxide, semiconductor gas sensor, gas sensitivity at room temperature, temperature dependence of conductivity, oxygen dissociation, surface acceptor, Schottky double barrier model
- Nikita A. Klychkov – 3rd year postgraduate student, Physics Institute, Saratov State University
- Viacheslav V. Simakov – Dr. Sc., Professor, Material Sciences, Technologies and Quality Management Department, Saratov State University
- Ilya V. Sinev – Ph. D., Docent, Material Sciences, Technologies and Quality Management Department, Saratov State University
Reference:
Klychkov, N.A. The effect of deep surface acceptor states on the temperature-dependent conductivity of zinc oxide nanoparticles / N.A. Klychkov, V.V. Simakov, I.V. Sinev // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 906-921. DOI: 10.26456/pcascnn/2024.16.906. (In Russian).
Full article (in Russian): download PDF file
References:
1. Kisin V.V., Simakov V.V., Voroshilov S.A., et al. Graduirovka tonkoplenochnogo sensora gaza [Calibration of a thin-layer gas sensor], Pribory i tekhnika eksperimenta [Instruments and Experimental Techniques], 2009, vol. 1, pp. 158-160. (In Russian).
2. Simakov V.V., Sinev I.V., Smirnov A.V., Grebennikov A.I. The effect of temperature on the growth rate of filamentous nanocrystals of tin dioxide formed by physical deposition from the vapor-gas phase, Technical Physics, 2016. vol. 61, issue 4, pp. 574-578. DOI: 10.1134/S1063784216040216.
3. Rumyanceva M.N., Makeeva E.A., Gas`kov A.M., Vliyanie mikrostruktury poluprovodnikovykh sensornykh materialov na khemosorbtsiyu kisloroda na ikh poverkhnosti [The effect of the microstructure of semiconductor sensor materials on the chemisorption of oxygen on their surface], Rossijskij khimicheskij zhurnal [Russian Chemical Journal], 2008, vol. 52, issue 2, pp. 122-129. (In Russian).
4. Simakov V.V., Nikitina L.V., Sinev I.V. Apparatno-programmnyj kompleks mnogoparametricheskogo raspoznavaniya mnogokomponentnykh gazovykh smesej na osnove mul'tisensornykh mikrosistem [Hardware and software complex for multiparametric recognition of multicomponent gas mixtures based on multisensory microsystems], Bashkirskij khimicheskij zhurnal [Bashkir Chemical Journal], 2010, vol. 17, issue 5. pp. 125-127. (In Russian).
5. Simakov V., Voroshilov A., Grebennikov A. et al. Gas identification by quantitative analysis of conductivity-vs-concentration dependence for SnO2 sensors, Sensors and Actuators B: Chemical, 2009, vol. 137, issue 2, pp. 456-461. DOI: 10.1016/j.snb.2009.01.005.
6. Ma D., Gao J., Zhang Z., Zhao H. Gas recognition method based on the deep learning model of sensor array response map, Sensors and Actuators B: Chemical, 2021, vol. 330, art. no. 129349, 14 p. DOI: 10.1016/j.snb.2020.129349.
7. Fine G.F., Cavanagh L.M., Afonja A., Binions R. Metal oxide semi-conductor gas sensors in environmental monitoring, Sensors, 2010, vol. 10, issue 6, pp. 5469-5502. DOI: 10.3390/s100605469.
8. Tiemann M. Porous metal oxides as gas sensors, Chemistry–A European Journal, 2007, vol. 13, issue 30, pp. 8376-8388. DOI: 10.1002/chem.200700927.
9. Comini E. Metal oxide nano-crystals for gas sensing, Analytica Chimica Acta, 2006, vol. 568, issue 1-2, pp. 28-40. DOI: 10.1016/j.aca.2005.10.069.
10. Klychkov N.A., Simakov V.V., Efanova V.V., Sinev I.V. Perekrestnoe vliyanie parov izopropanola i etanola na otklik poluprovodnikovogo sensora gaza [Cross effect of isopropanol and ethanol vapor on the response of a semiconductor gas sensor], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 746-753. DOI: 10.26456/pcascnn/2023.15.746. (In Russian).
11. Korabel M.D., Sinev I.V., Shikunov D.A. et al. Printsipy sozdaniya virtual'noj mul'tisensornoj sistemy dlya raspoznavaniya gazovykh smesej [Principles of creating a virtual multi-sensor system for recognition gas mixtures], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 827-835. DOI: 10.26456/pcascnn/2020.12.827. (In Russian).
12. Smirnov A.V., Grebennikov A.I., Sinev I.V., Simakov V.V. Vliyanie termotsiklirovaniya na vosproizvodimost' temperaturnoj zavisimosti provodimosti nanostrukturirovannykh plyonok SnO2 [The effect of thermal cycling on the reproducibility of the temperature dependence of the conductivity of nanostructured SnO2 films], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2013, vol. 5, pp. 296-300. (In Russian).
13. Klychkov N.A., Kurmasheva D.V., Simakov V.V., Sinev I.V. Matematicheskoe modelirovanie provodimosti polikristallicheskikh sloyov shirokozonnykh poluprovodnikov pri adsorbtsii na ikh poverkhnosti gazov -vosstanovitelej v prisutstvii kisloroda [Mathematical modeling the polycrystalline layers conductivity of wide-bandgap semiconductors during adsorption on their surface of gases-reducers in the presence of oxygen], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, vol. 15, pp. 424-431. DOI: 10.26456/pcascnn/2023.15.424. (In Russian).
14. Korotchenkov G., Brynzari V., Dmitriev S. Electrical behavior of SnO2 thin films in humid atmosphere, Sensors and Actuators B: Chemical, 1999, vol. 54, issue 3, pp. 197-201. DOI: 10.1016/S0925-4005(99)00016-7.
15. Klychkov N.A., Simakov V.V., Sinev I.V. Temperaturnaya zavisimost' provodimosti plenki Cu: SnO2 na vozdukhe [Temperature dependence of Cu: SnO2 film conductivity in air medium], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, vol. 15, pp. 119-126. DOI: 10.26456/pcascnn/2023.15.119. (In Russian).
16. Patil P.S., Kawar R.K., Seth T. et al. Effect of substrate temperature on structural, electrical and optical properties of sprayed tin oxide (SnO2) thin films, Ceramics International, 2003, vol. 29, issue 7, pp. 725-734. DOI: 10.1016/S0272-8842(02)00224-9.
17. Klychkov N.A., Simakov V.V., Sinev I.V. Programmnyj kompleks dlya rascheta elektricheskikh svojstv poluprovodnikovykh sensorov gaza na osnove polikristallicheskikh plenok v gazovykh sredakh razlichnogo sostava [A software package for calculating the electrical properties of semiconductor gas sensors based on polycrystalline films in gaseous media of various compositions]. Certificate RF, no. 2023687537, 2023. (In Russian).
18. Mahdi J.K.B., Banimuslem H.A. Temperature dependence conductivity and optical energy gap of ZnO modified CNTs prepared by sol-gel method, AIP Conference Proceedings, 2023, vol. 2591, issue 1, art. no. 040029, 10 p. DOI: 10.1063/5.0120451.
19. Vorobyeva N.A., Rumyantseva M.N., Forsh P.A., Gaskov A.M. Conductivity of nanocrystalline ZnO (Ga), Semiconductors, 2013, vol. 47, issue 5, pp. 650-654. DOI: 10.1134/S1063782613050242.
20. Roy T.K., Sanyal D., Bhowmick D., Chakrabarti A. Temperature dependent resistivity study on zinc oxide and the role of defects, Materials Science in Semiconductor Processing, 2013, vol. 16, issue 2, pp. 332-336. DOI: 10.1016/j.mssp.2012.09.018.
21. Nakagawa M., Mitsudo H. Anomalous temperature dependence of the electrical conductivity of zinc oxide thin films, Surface science, 1986, vol. 175, issue 1, pp. 157-176. DOI: 10.1016/0039-6028(86)90089-0.
22. Yan Y., Al-Jassim M.M., Wei S.H. Oxygen-vacancy mediated adsorption and reactions of molecular oxygen on the ZnO (10 1 0) surface, Physical Review B, 2005, vol. 72, issue 16, pp. 161307-1-161307-4. DOI: 10.1103/PhysRevB.72.161307.
23. Stambolova I., Konstantinov K., Vassilev S. et al. Lanthanum doped SnO2 and ZnO thin films sensitive to ethanol and humidity, Materials Chemistry and Physics, 2000, vol. 63, issue 2, pp. 104-108. DOI: 10.1016/S0254-0584(99)00193-5.
24. Suzuki T.T., Ohgaki T., Adachi Y. et al. Ethanol gas sensing by a Zn-terminated ZnO (0001) bulk single-crystalline substrate, ACS Omega, 2020, vol. 5, issue 33, pp. 21104-21112. DOI: 10.1021/acsomega.0c02750.
25. Piliai L., Tomeček D., Hruška M. et al. New insights towards high-temperature ethanol-sensing mechanism of ZnO-based chemiresistors, Sensors, 2020, vol. 20, issue 19, art. no. 5602, 14 p. DOI: 10.3390/s20195602.
26. Srikant V., Clarke D.R. On the optical band gap of zinc oxide, Journal of Applied Physics, 1998, vol. 83, issue 10, pp. 5447-5451. DOI: 10.1063/1.367375.
27. Sharma D.K., Shukla S., Sharma K.K., Kumar V. A review on ZnO: Fundamental properties and applications, Materials Today: Proceedings, 2022, vol. 49, part 8, pp. 3028-3035. DOI: 10.1016/j.matpr.2020.10.238.
28. Yoshikawa H., Adachi S. Optical constants of ZnO, Japanese Journal of Applied Physics, 1997, vol. 36, issue 10, pp. 6237-6243. DOI: 10.1143/JJAP.36.6237.
29. Weißenrieder K.S., Müller J. Conductivity model for sputtered ZnO-thin film gas sensors, Thin Solid Films, 1997, vol. 300, issue 1-2, pp. 30-41. DOI: 10.1016/S0040-6090(96)09471-0.
30. von Wenckstern H., Weinhold S., Biehne G. et. al. Donor levels in ZnO, Advances in Solid State Physics, ed. by B. Kramer. Heidelberg, Berlin, Springer-Verlag, 2006, vol. 46, 2006, pp. 263-274. DOI: 10.1007/11423256_21.
31. Hoffman D.M., Pfisterer D., Sann J. et al. Properties of the oxygen vacancy in ZnO, Applied Physics A, 2007, vol. 88, pp. 147-151. DOI: 10.1007/s00339-007-3956-2.