Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


The effect of water vapor on the conductivity and response of gas-sensitive nanostructured ZnO layers to ethanol vapors at room temperature

N.A. Klychkov1, V.V. Simakov1, I.V. Sinev1, V.V. Efanova2, A.M. Zakharevich1

1 Saratov State University
2 Volga State Transport University

DOI: 10.26456/pcascnn/2024.16.891

Original article

Abstract: The paper presents the results of a study on the sensitivity of gas-sensing zinc oxide ZnO film nanostructures at room temperature. The aim of the research was to investigate the effect of ambient humidity on the conductivity of ZnO samples and their response to ethanol vapor in the presence of water vapor. It has been discovered that zinc oxide films are responsive to both water and ethanol vapor at room temperature, across a broad range of concentrations (5% to 50% saturated vapor). The study found that repeated exposure to water vapor can lead to changes in the conductivity of zinc oxide samples when they are exposed to dry air. Additionally, pre-annealing the samples at 400°C can help to replicate the concentration-dependent response of gas-sensitive structures to water vapor. Hysteresis was observed in the relationship between concentration and response to water vapor, in the range of 5% to 90% of the relative humidity. This can be explained by the capillary condensation of water vapor within the mesopores of zinc oxide layers. As the humidity of a gas sample containing ethanol increased, the response values and detection limit for ethanol decreased in the gas-air mixture for ZnO samples. Statistical analysis using the principal component method showed the potential for classifying dry and humid gas samples with ethanol vapor in air. Data processing was used to eliminate the influence of the background humidity on the calibration curve for gas-sensitive ZnO samples, demonstrating the effectiveness of this method.

Keywords: zinc oxide, sol-gel technology, semiconductor gas sensor, ethanol response, gas sensitivity, room temperatures, humidity effect

  • Nikita A. Klychkov – 3rd year postgraduate student, Physics Institute, Saratov State University
  • Viacheslav V. Simakov – Dr. Sc., Professor, Material Sciences, Technologies and Quality Management Department, Saratov State University
  • Ilya V. Sinev – Ph. D., Docent, Material Sciences, Technologies and Quality Management Department, Saratov State University
  • Vera V. Efanova – Dr. Sc., Professor, Volga State Transport University
  • Andrey M. Zakharevich – Ph. D., Head of the Laboratory for Diagnostics of Nanomaterials and Structures, Saratov State University

Reference:

Klychkov, N.A. The effect of water vapor on the conductivity and response of gas-sensitive nanostructured ZnO layers to ethanol vapors at room temperature / N.A. Klychkov, V.V. Simakov, I.V. Sinev, V.V. Efanova, A.M. Zakharevich // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 891-905. DOI: 10.26456/pcascnn/2024.16.891. (In Russian).

Full article (in Russian): download PDF file

References:

1. Simakov V.V., Yakusheva O.V., Voroshilov A.S. et al. Variation of the conductivity of a thin film of tin dioxide in response to stepwise gas sampling, Technical Physics Letters, 2006, vol. 32, issue 8, pp. 725-728. DOI: 10.1134/S1063785006080256.
2. Zhu L., Zeng W. Room-temperature gas sensing of ZnO-based gas sensor: a review, Sensors and Actuators A: Physical, 2017, vol. 267, pp. 242-261. DOI: 10.1016/j.sna.2017.10.021.
3. Wang Y., Li X., Wang N. et al. Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities, Separation and Purification Technology, 2008, vol. 62, issue 3, pp. 727-732. DOI: 10.1016/j.seppur.2008.03.035.
4. Gupta S.K., Joshi A., Kaur M. Development of gas sensors using ZnO nanostructures, Journal of Chemical Sciences, 2010, vol. 122, pp. 57-62. DOI: 10.1007/s12039-010-0006-y.
5. Fan S.W., Srivastava A.K., Dravid V.P. Nanopatterned polycrystalline ZnO for room temperature gas sensing, Sensors and Actuators B: Chemical, 2010, vol. 144, issue 1, pp. 159-163. DOI: 10.1016/j.snb.2009.10.054.
6. Sinev I.V., Klychkov N.A., Timoshenko D.A., Simakov V.V Vliyanie osveshcheniya na raspoznavatel'nuyu sposobnost' mul'tisensornykh mikrosistem na osnove nitevidnykh nanokristallov dioksida olova [Illumination effect on recognition ability of multisensor microsystems based on tin oxide nanowhiskers], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 713-721. DOI: 10.26456/pcascnn/2020.12.713. (In Russian).
7. Kirkwood N., Singh B., Mulvaney P. Enhancing quantum dot LED efficiency by tuning electron mobility in the ZnO electron transport layer, Advanced Materials Interfaces, 2016, vol. 3, issue 22, art. no. 1600868, 7 p. DOI: 10.1002/admi.201600868.
8. Hoffman D.M., Pfisterer D., Sann J. et al. Properties of the oxygen vacancy in ZnO, Applied Physics A, 2007, vol. 88, pp. 147-151. DOI: 10.1007/s00339-007-3956-2.
9. Liu L., Mei Z., Tang A. Oxygen vacancies: The origin of n-type conductivity in ZnO, Physical Review B, 2016, vol. 93, issue 23, pp. 235305-1-235305-6. DOI: 10.1103/PhysRevB.93.235305.
10. Klychkov N.A., Kurmasheva D.V., Simakov V.V., Sinev I.V. Matematicheskoe modelirovanie provodimosti polikristallicheskikh sloyov shirokozonnykh poluprovodnikov pri adsorbtsii na ikh poverkhnosti gazov -vosstanovitelej v prisutstvii kisloroda [Mathematical modeling the polycrystalline layers conductivity of wide-bandgap semiconductors during adsorption on their surface of gases-reducers in the presence of oxygen], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 424-431. DOI: 10.26456/pcascnn/2023.15.424. (In Russian).
11. Simakov V., Voroshilov A., Grebennikov A. et al. Gas identification by quantitative analysis of conductivity-vs concentration dependence for SnO2 sensors, Sensors and Actuators B: Chemical, 2009, vol. 137, issue. 2, pp. 456-461. DOI: 10.1016/j.snb.2009.01.005.
12. Simakov V.V., Sinev I.V., Smirnov A.V. et al. Vliyanie parov vody i osveshcheniya na provodimost' tonkikh plenok dioksida olova pri komnatnoj temperature [Influence of water vapor and illumination on conductivity oftin dioxide thin films at room temperature], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, pp. 449-454. DOI: 10.26456/pcascnn/2017.9.449.
13. Wang C., Yin L., Zhang L. et al. Metal oxide gas sensors: sensitivity and influencing factors, Sensors, 2010. vol. 10, issue 3, pp. 2088-2106. DOI: 10.3390/s100302088.
14. Lee J., Choi Y., Park B.J. et al. Precise control of surface oxygen vacancies in ZnO nanoparticles for extremely high acetone sensing response, Journal of Advanced Ceramics, 2022, vol. 11, issue 5, pp. 769-783. DOI: 10.1007/s40145-022-0570-x.
15. Fang Z.B., Yan Z.J., Tan Y.S. et al. Influence of post-annealing treatment on the structure properties of ZnO films, Applied Surface Science, 2005, vol. 241, issue 3-4, pp. 303-308. DOI: 10.1016/j.apsusc.2004.07.056.
16. Gurylev V., Perng T.P. Defect engineering of ZnO: Review on oxygen and zinc vacancies, Journal of the European Ceramic Society, 2021, vol. 41, issue 10, pp. 4977-4996. DOI: 10.1016/j.jeurceramsoc.2021.03.031.
17. Bai Z., Xie C., Hu M. et al. Effect of humidity on the gas sensing property of the tetrapod-shaped ZnO nanopowder sensor, Materials Science and Engineering: B, 2008, vol. 149, issue 1, pp. 12-17. DOI: 10.1016/j.mseb.2007.11.020.
18. Raymand, D., van Duin A.C.T., Spångberg D. et al. Water adsorption on stepped ZnO surfaces from MD simulation, Surface Science, 2010, vol. 604, issue 9-10, pp. 741-752. DOI: 10.1016/j.susc.2009.12.012.
19. Calzolari A., Catellani A. Water adsorption on nonpolar ZnO (10 1 0) surface: a microscopic understanding, The Journal of Physical Chemistry C, 2009, vol. 113, issue 7, pp. 2896-2902. DOI: 10.1021/jp808704d.
20. Dulub O., Meyer B., Diebold U. Observation of the dynamical change in a water monolayer adsorbed on a ZnO surface, Physical Review Letter, 2005, vol. 95, issue. 13, pp. 136101-1-136101-4. DOI: 10.1103/PhysRevLett.95.136101.
21. Yu S., Zhang H., Zhang J., Li Z. Effects of pH on high-performance ZnO resistive humidity sensors using one-step synthesis, Sensors, 2019, vol. 19, issue 23, art. no. 5267, 11 p. DOI: 10.3390/s19235267.
22. Korotcenkov G., Brinzari V., Golovanov V., Blinov Y. Kinetics of gas response to reducing gases of SnO2 films, deposited by spray pyrolysis, Sensors and Actuators B: Chemical, 2004, vol. 98, issue 1, pp. 41-45. DOI: 10.1016/j.snb.2003.08.022.
23. Erol A., Okur S., Comba B. et al. Humidity sensing properties of ZnO nanoparticles synthesized by sol–gel process, Sensors and Actuators B: Chemical, 2010, vol. 145, issue 1, pp. 174-180. DOI: 10.1016/j.snb.2009.11.051.
24. Klychkov N.A., Simakov V.V., Sinev I.V., Timoshenko D.A. Dinamika otklika sensora na osnove nanostrukturirovannogo sloya dioksida olova pri vozdejstvii parov izopropanola [Dynamics of response of a sensor based on a nanostructured tin dioxide layer exposed to the isopropanol vapors], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 708-716. DOI 10.26456/pcascnn/2021.13.708. (In Russian).
25. Kwak G., Yong K. Adsorption and reaction of ethanol on ZnO nanowires, The Journal of Physical Chemistry C, 2008, vol. 112, issue 8, pp. 3036-3041. DOI: 10.1021/jp7103819.
26. Meyer B., Rabaa H., Marx D. Water adsorption on ZnO (1010): from single molecules to partially dissociated monolayers, Physical Chemistry Chemical Physics, 2006, vol. 8, issue 13, pp. 1513-1520. DOI: 10.1039/b515604a.

⇐ Prevoius journal article | Content | Next journal article ⇒