Description of complexation thermodynamic parameters for alkanes and polyaromatic hydrocarbons in the framework of semiempirical methods
E.S. Kartashynska1,2
1 L.M. Litvinenko Institute of Physical Organic and Coal Chemistry
2 Donetsk National Technical University
DOI: 10.26456/pcascnn/2024.16.873
Original article
Abstract: The paper presents a comparative analysis of quantum chemical semiempirical methods for calculation of the binding thermodynamic parameters for CnH2n+2 alkanes (n=6–14) and polyaromatic hydrocarbons of the coronene series as model structures of the graphene surface. Two types of orientation of alkane molecules are considered depending on the relative position of the C–C–C «zigzag» plane of alkanes within the polyaromatic hydrocarbons plane: parallel and perpendicular. The parallel arrangement of alkane molecules on the polyaromatic hydrocarbon surface is revealed to be more energetically advantageous than the perpendicular one. The enthalpy, entropy, and Gibbs energy of alkane formation and binding to polyaromatic hydrocarbons are calculated using the PM3, RM1, PM6-DH2, PM6-D3H4, and PM7 methods. It is shown that the first two methods are improper for describing the intermolecular C–H/π interactions in alkane – polyaromatic hydrocarbon systems, since the Gibbs binding energy estimated in them has positive values, which is inconsistent with the available literature data. The use of the PM6 method with DH2 correction for dispersion interactions and hydrogen bonds is optimal. The values of binding enthalpy in alkane – tricircumcoronene complexes calculated using PM6-DH2 and RM6-D3H4 methods are in good agreement with experimental data on the enthalpy of adsorption of alkanes on the graphite/graphene surface, as well as data from molecular dynamic modeling. However, according to the Gibbs binding energy in the considered alkane complexes with parallel and perpendicular orientation of alkanes on tricircumcoronene, only the PM6-DH2 method gives values that correspond in the best way to the available data on the energy preference of such complexes.
Keywords: alkanes, polyaromatic hydrocarbons, adsorption, enthalpy, absolute entropy, Gibbs binding energy, C–H/π interactions, semiempirical methods
- Elena S. Kartashynska – Dr. Sc., Senior Researcher of Supramolecular Chemistry Department, L.M. Litvinenko Institute of Physical Organic and Coal Chemistry, Professor of the Department of General, Physical and Organic Chemistry Donetsk National Technical University
Reference:
Kartashynska, E.S. Description of complexation thermodynamic parameters for alkanes and polyaromatic hydrocarbons in the framework of semiempirical methods / E.S. Kartashynska // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 873-890. DOI: 10.26456/pcascnn/2024.16.873. (In Russian).
Full article (in Russian): download PDF file
References:
1. Novoselov K.S., Jiang D., Schedin F. et al. Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences of the USA, 2005, vol. 102, issue 30, pp. 10451-10453. DOI: 10.1073/pnas.0502848102.
2. Pálinkás A., Kálvin G., Vancsó P. et al. The composition and structure of the ubiquitous hydrocarbon contamination on van der Waals materials, Nature Communications, 2022, vol. 13, issue 1, art. no. 6770, 10 p. DOI: 10.1038/s41467-022-34641-7.
3. Arvelo D.M., Uhlig M.R., Comer J., García R. Interfacial layering of hydrocarbons on pristine graphite surfaces immersed in water, Nanoscale, 2022, vol. 14, issue 38, pp. 14178-14184. DOI: 10.1039/D2NR04161H.
4. Piskorz T.K., Gobbo C., Marrink S.J. et al. Nucleation mechanisms of self-assembled physisorbed monolayers on graphite. Journal of Physical Chemistry C, 2019, vol. 123, issue 28, pp. 17510-17520. DOI: 10.1021/acs.jpcc.9b01234.
5. McGonigal G.C., Bernhardt R.H., Thomson D.J. Imaging alkane layers at the liquid/graphene interface with the scanning tunneling microscopy, Applied Physics Letters, 1990, vol. 57, pp. 28-30. DOI: 10.1063/1.104234.
6. Couto M.S., Liu X.Y., Meekes H., Bennema P. Scanning tunneling microscopy studies on n-alkane molecules adsorbed on graphite, Journal of Applied Physics, 1994, vol. 75, issue 1, pp. 627-629. DOI: 10.1063/1.355799.
7. Gosvami N.N., O'Shea S.J. Nanoscale trapping and squeeze-out of confined alkane, Langmuir, 2015, vol. 31, issue 47, pp. 12960-12967. DOI: 10.1021/acs.langmuir.5b03133.
8. Uhlig M.R., Martin-Jimenez D., Garcia R. Atomic-scale mapping of hydrophobic layers on graphene and few-layer MoS2 and WSe2 in water, Nature Communications, 2019, vol. 10, art. no. 2606, 7 p. DOI: 10.1038/s41467-019-10740-w.
9. Wu D., Yang X. Coarse-grained molecular simulation of self-assembly for nonionic surfactants on graphene nanostructures, Journal of Physical Chemistry B, 2012, vol. 116, isssue 39, pp. 12048-12056. DOI:10.1021/jp3043939.
10. Ilan B., Florio G.M., Hybertsen M.S., Berne B.J. Scanning tunneling microscopy images of alkane derivatives on graphite: role of electronic effects, Nano Letters, 2008, vol. 8, issue 10, pp. 3160-3165. DOI: 10.1021/nl8014186.
11. Hinnemo M., Zhao J., Ahlberg P. et al. On monolayer formation of pyrenebutyric acid on graphene, Langmuir, 2017, vol. 33, issue15, pp. 3588-3593. DOI:10.1021/acs.langmuir.6b04237.
12. McNamara J.P., Sharma R., Vincent M.A. et al. The non-covalent functionalisation of carbon nanotubes studied by density functional and semi-empirical molecular orbital methods including dispersion corrections, Physical Chemistry Chemical Physics, 2008, vol. 10, issue 1, pp. 128-135 DOI: 10.1039/B711498B.
13. Gordeev E.G., Polynski M.V., Ananikov V.P. Fast and accurate computational modeling of adsorption on graphene: a dispersion interaction challenge, Physical Chemistry Chemical Physics, 2013, vol. 15, issue 43, pp. 18815-18821. DOI: 10.1039/c3cp53189a.
14. Vincent M.A., Hillier I.H. Accurate prediction of adsorption energies on graphene, using a dispersion-corrected semiempirical method including solvation, Journal of Chemical Information and Modeling, 2014, vol. 54, issue 8, pp. 2255-2260. DOI: 10.1021/ci5003729.
15. Raksha E.V., Vysotsky Yu.B., Kartashynska E.S., Savoskin M.V. Formation of carboxylic acid complexes with polyaromatic hydrocarbons of the coronene series. Quantum chemical modelling, Journal of Physics Conference Series, 2020, vol. 1658, issue 1, art. no. 012044, 9 p. DOI: 10.1088/1742-6596/1658/1/012044.
16. Wheatley R.J., Tulegenov A.S., Bichoutskaia E. Intermolecular potentials from supermolecule and monomer calculations, International Reviews in Physical Chemistry, 2004, vol. 23, issue 1, pp. 151-185. DOI: 10.1080/014423504200207772.
17. Stewart J.J.P. MOPAC2016. Version 19.168W. Available at: http://OpenMOPAC.net (accessed 20.07.2024).
18. Ran J., Wong M.W. Saturated hydrocarbon−benzene complexes: theoretical study of cooperative ch/π interactions, Journal of Physical Chemistry A, 2006, vol. 110, issue 31, pp. 9702-9709. DOI: 10.1021/jp0555403.
19. Tsuzuki S., Honda K., Ushimaru T. et al. The magnitude of the CH/π interaction between benzene and some model hydrocarbons, Journal of American Chemical Society, 2000, vol. 122, issue 15, pp. 3746-3753. DOI: 10.1021/ja993972j.
20. Dean J. Lange’s handbook of chemistry. New York, McGraw-Hill, Inc., 1999, 1291 p.
21. Singla P., Riyaz M., Singhal S., Goel N. Theoretical study of adsorption of amino acids on graphene and BN sheet in gas and aqueous phase with empirical DFT dispersion correction, Physical Chemistry Chemical Physics, 2016, vol. 18, issue 7, pp. 5597-5604. DOI: 10.1039/c5cp07078c.
22. Suezawa H., Hashimoto T., Tsuchinaga K. et al. Electronic substituent effect on intramolecular CH/π interaction as evidenced by NOE experiments, Journal of Chemical Society, Perkin Transactions 2, 2000, issue 6, pp. 1243-1249. DOI: 10.1039/A909450D.
23. Meyer E.A., Castellano R.K., Diedrich F. Interactions with aromatic rings in chemical and biological recognition, Angewandte Chemie International Edition, 2003, vol. 42, issue 1, pp. 1210-1250. DOI: 10.1002/anie.200390319.
24. Paytakov G., Dinadayalane T., Leszczynski J. Toward selection of efficient density functionals for van der Waals molecular complexes: comparative study of C - H∙∙∙π and N - H∙∙∙π interactions, Journal of Physical Chemistry A, 2015, vol. 119, issue 7, pp. 1190-1200 DOI: 10.1021/jp511450u.
25. Hughes T.J., Shaw R.A., Russo S.P. Computational investigations of dispersion interactions between small molecules and graphene-like flakes, Journal of Physical Chemistry A, 2020, vol. 124, issue 46, pp. 9552-9561. DOI: 10.1021/acs.jpca.0c06595.
26. Shibasaki K., Fujii A., Mikami N., Tsuzuki S. Magnitude of the CH/π interaction in the gas phase: experimental and theoretical determination of the accurate interaction energy in benzene−methane, Journal of Physical Chemistry A, 2006, vol. 110, issue 13, pp. 4397-4404. DOI: 10.1021/jp0605909.
27. Ruzanov A., Lembinen M., Ers H. et al. Density functional theory study of ionic liquids adsorption on circumcoronene shaped graphene, Journal of Physical Chemistry C, 2018, vol. 122, issue 5, pp. 2624-2631. DOI:10.1021/acs.jpcc.7b12156.
28. Vidali G., Ihm G., Kim H.-Y., Cole M.W. Potentials of physical adsorption, Surface Science Reports, 1991, vol. 12, issue 4, pp. 133–181. DOI: 10.1016/0167-5729(91)90012-m.
29. Pykal M., Jurecka P., Karlicky F., Otyepka M. Modelling of graphene functionalization, Physical Chemistry Chemical Physics, 2016, vol. 18, issue 9, pp. 6351-6372. DOI: 10.1039/c5cp03599f.
30. Grozek A.J. Selective adsorption at graphite/hydrocarbon interfaces, Proceedings of the Royal Society of London A, 1970, vol. 314, issue 1519, pp. 473-498. DOI: 10.1098/rspa.1970.0019.
31. Yin S., Wang C., Qiu X. et al. Theoretical study of the effects of intermolecular interactions in self-assembled long-chain alkanes adsorbed on graphite surface, Surface and Interface Analysis, 2001, vol. 32, issue 1, pp. 248-252. DOI: 10.1002/sia.1047.
32. Gobbo C., Beurroies I., de Ridder D. et al. MARTINI model for physisorption of organic molecules on graphite, Journal of Physical Chemistry C, 2013, vol. 117, issue 30, pp. 15623-15631. DOI: 10.1021/jp402615p.
33. Isirikyan A., Kiselev A.V. Absolute adsorption isotherms of vapors of nitrogen, benzene and n-hexane, and heats of adsorption of benzene and n-hexane on graphitized carbon blacks. 1. Graphitized thermal blacks, Journal of Physical Chemistry, 1961, vol. 65, issue 4, pp. 601-607. DOI: 10.1021/j100822a004.
34. Faglioni F., Claypool C.L., Lewis N.S., Goddard W.A. Theoretical description of the images of alkanes and substituted alkanes adsorbed on graphite, Journal of Physical Chemistry B, 1997, vol. 101, issue 31, pp. 5996-6020. DOI: 10.1021/jp9701808.