Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Electrochemical and biomimetic deposition of calcium phosphates on titanium alloys

A.E. Doroshenko, V.K. Krut’ko, O.N. Musskaya, A.I. Kulak

Institute of General and Inorganic Chemistry of the NAS of Belarus

DOI: 10.26456/pcascnn/2024.16.848

Original article

Abstract: The presence of impurities of other metals in titanium alloys affects the composition of the oxide film after heat treatment: in addition to rutile, the VT 00 alloy contains Ti6O oxide, which in the VT 1-0 and VT 6 alloys is transformed into Ti3O oxide, which affects the corrosion resistance and mechanical strength. Calcium phosphate coatings containing brushite, calcite and apatite were obtained by electrochemical deposition on titanium plates at room temperature, pH 5, and a constant current density of 30 mA/cm2 from a suspension electrolyte CaCO3 / Ca(H2PO4)2. A layer of amorphized apatite was applied to the coatings using the biomimetic method in a 3-fold concentrated model solution of Simulated Body Fluid to improve biocompatibility. After heat treatment at 800°C, calcium phosphate coatings obtained on titanium VT 00 have greater biocompatibility, but lower resorbability, due to the presence of a larger amount of crystalline hydroxyapatite in the coating.

Keywords: titanium alloys, calcium phosphate coatings, brushite, calcite, SBF model solution, amorphized apatite, hydroxyapatite

  • Anna E. Doroshenko – Junior Researcher of Photochemistry and Electrochemistry Laboratory, Institute of General and Inorganic Chemistry of the NAS of Belarus
  • Valentina K. Krut’ko – Ph. D., Assistant Professor, Head of the Laboratory of Photochemistry and Electrochemistry, Institute of General and Inorganic Chemistry of the NAS of Belarus
  • Olga N. Musskaya – Ph. D., Assistant Professor, Leading Researcher of Photochemistry and Electrochemistry Laboratory, Institute of General and Inorganic Chemistry of the NAS of Belarus
  • Anatoly I. Kulak – Academician of the NAS of Belarus, Dr. Sc., Professor, Director, Institute of General and Inorganic Chemistry of the NAS of Belarus

Reference:

Doroshenko, A.E. Electrochemical and biomimetic deposition of calcium phosphates on titanium alloys / A.E. Doroshenko, V.K. Krut’ko, O.N. Musskaya, A.I. Kulak // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 848-856. DOI: 10.26456/pcascnn/2024.16.848. (In Russian).

Full article (in Russian): download PDF file

References:

1. Quinn J. McFadden R., Chan C.-W., Carson L. Titanium for orthopedic applications: an overview of surface modification to improve biocompatibility and prevent bacterial biofilm formation, iScience, 2020, vol. 23, issue 11, art. no. 101745, 22 p. DOI:10.1016/j.isci.2020.101745.
2. Geetha M., Singh A.K., Asokamani R., Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review, Progress in Materials Science, 2009, vol. 54, issue 3, pp. 397-425. DOI: 10.1016/j.pmatsci.2008.06.004.
3. Hanawa T. Biofunctionalization of titanium for dental implant, Japanese Dental Science Review, 2010, vol. 46, issue 2, pp. 93-101. DOI: 10.1016/j.jdsr.2009.11.001
4. Farrakhov R., Melnichuk O., Parfenov E. et al. Comparison of biocompatible coatings produced by plasma electrolytic oxidation on cp-Ti and Ti-Zr-Nb superelastic alloy, Coatings, 2021, vol. 11, issue 4, pp. 401-416. DOI: 10.3390/coatings11040401.
5. Sheremetyev V., Dubinckiy S., Kudryashova A. et al In situ XRD study of stress- and cooling-induced martensitic transformations in ultrafine- and nano-grained superelastic Ti-18Zr-14Nb alloy, Journal of Alloys and Compounds, 2022, vol. 902, art. no. 163704, 17 p. DOI: 10.1016/j.jallcom.2022.163704.
6. Tchana Nkonta D.V., Simescu-Lazar F., Drevet R. et al. Influence of the surface mechanical attrition treatment (SMAT) on the corrosion behavior of Co28Cr6Mo alloy in Ringer’s solution, Journal of Solid State Electrochemistry, 2018, vol. 22, issue 4, pp. 1091-1098. DOI: 10.1007/s10008-017-3851-5.
7. Tchana Nkonta D.V., Drevet R., Faure J. et. Effect of surface mechanical attrition treatment on the microstructure of cobalt–chromium–molybdenum biomedical alloy, Microscopy Research and Technique, 2021, vol. 84, issue 2, pp. 238-245. .DOI: 10.1002/jemt.23580.
8. Huang F., Qin Y., Zhang H. et al. Potential dependent mechanism of the composition and electrochemical property of oxide films of Ti-6Al-3Nb-2Zr-1Mo, Corrosion Science, 2023, vol. 213, art. no. 110978, 11 p. DOI: 10.1016/j.corsci.2023.110978.
9. de Jonge L. T., Leeuwenburgh S.C.G., Wolke J.G.C., Jansen J.A. Organic–inorganic surface modifications for titanium implant surfaces, Pharmaceutical Research, 2008, vol. 25, issue 10, pp. 2357-2369. DOI: 10.1007/s11095-008-9617-0.
10. Zheng S., Faguo, L. Research status of aluminum base coating on titanium alloy, Coatings, 2023, vol. 13, issue 9, art. no. 1525, 20 p. DOI: 10.3390/coatings13091525.
11. Song H.-J., Lee H.-w., Lee J.-Y. et al. Characteristics and oxidation mechanism of thermal oxide on Ti-xCr and Ti-xV (x = 5, 10, 15) alloys, Journal of Alloys and Compounds, 2020, vol. 815, art. no. 152390, 10 p. DOI: 10.1016/j.jallcom.2019.152390.
12 Seo B., Im H., Park K.et al. Effect of iron content on corrosion properties of pure titanium as grain refiner, Materials, 2021, vol. 14, issue 23, art. no. 7193, 8 p. DOI: 10.3390/ma14237193.
13. Zhou Z., Shi Q., Wang J. et al. The unfavorable role of titanium particles released from dental implants, Nanotheranostics, 2021, vol. 5, issue 3, pp. 321-332. DOI: 10.7150/ntno.56401.
14. Tang G., Liu Z., Liu Y. et al. Recent trends in the development of bone regenerative biomaterials, Frontiers in Cell and Developmental Biology, 2021, vol. 9, art. no. 665813, 18 p. DOI: 10.3389/fcell.2021.665813.
15. Karachalios T., Tsatsaronis C., Efraimis G. et al. The long-term clinical relevance of calcar atrophy caused by stress shielding in total hip arthroplasty: a 10-year, prospective, randomized study, The Journal of Arthroplasty, 2004, vol. 19, issue 4, pp. 469-475. DOI: 10.1016/j.arth.2003.12.081.
16. Kokubo T., Takadama H. Simulated body fluid (SBF) as a standard tool to test the bioactivity of implants, Handbook of Biomineralization: Biological Aspects and Structure Formation, ed. by E. Epple, E. Bäuerlein, Weinheim, WILEY‐VCH Verlag GmbH & Co. KGaA, 2007, chapter 7, pp. 97-109. DOI: 10.1002/9783527619443.ch51.
17. Doroshenko A.E., Krut'ko, V.K., Musskaya O.N. et al. Fazovyj sostav i biosovmestimost' kal'tsijfosfatnykh pokrytiij na titane, obogashchennykh gidroksiapatitom [Phase composition and biocompatibility of calcium phosphate coatings on titanium enriched with hydroxyapatite] / Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 708-716. DOI: 10.26456/pcascnn/2023.15.708 (In Russian).
18. ten Broeke R.H.M., Alves A., Baumann A. et al. Bone reaction to a biomimetic third-generation hydroxyapatite coating and new surface treatment for the Symax hip stem, The Journal of Bone & Joint Surgery British, 2011, vol. 93, issue 6, pp. 760-768. DOI: 10.1302/0301-620X.93B6.24986.
19. Vallet-Regí M., Izquierdo-Barba I., Colilla M. Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, vol. 370, issue 1963, pp. 1400-1421. DOI: 10.1098/rsta.2011.0258.
20. Ballo, A. M., Xei W., Palmquist A. et al. Bone tissue reactions to biomimetic ion-substituted apatite surfaces on titanium implants, Journal of the Royal Society Interface, 2012, vol. 9, issue 72, pp. 1615-1624. DOI: 10.1098/rsif.2011.0808.
21. Vishwakarma V., Kaliaraj G., Mosas K. et al. Multifunctional coatings on implant materials–a systematic review of the current scenario, Coatings, 2023, vol. 13, issue 1, art. no. 69, 17 p. DOI: 10.3390/coatings13010069.
22. Krut'ko, V.K., Doroshenko A.E., Musskaya O.N. et al. Formiroovanie apatitov na ehlektroosazhdennykh kal'tsiifosfatakh v sistemakh Ca(NO3)2/NH4H2PO4 i CaCO3/Ca(H2PO4)2 [Apatites formation on electrodeposited calcium phosphates in the Ca(NO3)2/NH4H2PO4 and CaCO3/Ca(H2PO4)2 systems], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 860-869. DOI: 10.26456/pcascnn/2021.13.860. (In Russian).
23. Bucur A.I., Linul E., Taranu B.O. Hydroxyapatite coatings on Ti substrates by simultaneous precipitation and electrodeposition, Applied Surface Science. 2020, vol.527, art. no. 146820, 11 p. DOI: 10.1016/j.apsusc.2020.146820.
24. Li T.-T., Ling L., Lin M.-C. et al. Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition, Journal of Materials Science, 2020, vol. 55, issue 15, pp. 6352-6374. DOI 10.1007/s10853-020-04467-z.
25. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url: https://www.icdd.com/pdf-2 (accessed 15.06.2024).
26. Tang S.L. Li Y.F., Wang Y.R. et al. Theoretical study of mechanical and thermodynamic properties of titanium oxides TixOy, Effect of thermal oxidation on titanium oxides characteristics, Materials Chemistry and Physics, 2018, vol. 213, pp. 538-547. DOI: 10.1016/j.matchemphys.2018.01.03.

⇐ Prevoius journal article | Content | Next journal article ⇒