Morphology of nanocrystalline structures of hydroxyapatite based on fractal analysis
O.A. Golovanova, V.M. Kiselev
Dostoevsky Omsk State University
DOI: 10.26456/pcascnn/2024.16.826
Original article
Abstract: Currently, the global demand for orthopedic implants exceeds 6 million units per year and continues to increase. It is known that human bone is a composite material, the inorganic part of which is formed by calcium phosphates, mainly in the form of hydroxyapatite of non-stoichiometric composition. This fact determines the interest in studying the possibility of using hydroxyapatite-based materials for biomedical purposes, which are similar to the chemical composition of the bone and dental tissues and have high biocompatibility. Research in this area is necessary from both the fundamental perspective for expanding the scope of the method, and in view of development of new materials and studying biological fluids in health and pathology. The work shows that the presence of organic and inorganic additives in the synthesis of hydroxyapatite affects the composition and morphology of the crystals of the resulting compound. The results of analysis, presented in the form of diagrams, allow us to judge the inversely proportional relationship between the crystallization time and the value of the morphological dimension of the hydroxyapatite structures, regardless of the nature of the additive. The results obtained confirm the possibility of using morphological analysis to establish the patterns of formation of hydroxyapatite-based materials and to perform an express assessment of their properties (composition, morphology, degree of crystallinity, nature and concentration of impurities).
Keywords: crystallization, hydroxyapatite, modification, morphological dimension, structure, calcium phosphates, additives
- Olga A. Golovanova – Dr. Sc., Professor, Head of the Department of Inorganic Chemistry, Dostoevsky Omsk State University
- Vladimir M. Kiselev – Ph. D., Researcher, Inorganic Chemistry Department, Dostoevsky Omsk State University
Reference:
Golovanova, O.A. Morphology of nanocrystalline structures of hydroxyapatite based on fractal analysis / O.A. Golovanova, V.M. Kiselev // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 826-836. DOI: 10.26456/pcascnn/2024.16.826. (In Russian).
Full article (in Russian): download PDF file
References:
1. James S.L., Abate D., Abate K.H. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study, The Lancet, 2018, vol. 392, no. 10159, pp. 1789-1858. DOI: 10.1016/s0140-6736(18)32279-7.
2. Lesnyak O.M., Baranova I.A., Belova K.Yu. et al. Osteoporoz v Osteoporoz v Rossijskoj Federatsii: epidemiologiya, mediko-sotsial'nye i ekonomicheskie aspekty problemy (obzor literatury) [Osteoporosis in Russian Federation: epidemiology, socio-medical and economical aspects (review)], Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics of Russia], 2018, vol. 24, no. 1, pp. 155-168. DOI: 10.21823/2311-2905-2018-24-1-155-168. (In Russian).
3. Kivrak N., Taş A.C. Synthesis of calcium hydroxyapatitetricalcium phosphate (HA-TCP) composite bioceramics powders and their sintering behavior, Journal of the American Ceramic Society, 1998, vol. 81, issue 9, pp. 2245-2252. DOI: 10.1111/j.1151-2916.1998.tb02618.x.
4. Gibson I.R., Rehman I., Best S.M., Bonfield W. Characterization of the transformation from calciumdeficient apatite to β -tricalcium phosphate, Journal of Materials Science: Materials in Medicine, 2000, vol. 11, issue 12, pp. 799-804. DOI: 10.1023/A:1008905613182.
5. Alkhraisat M.H., Cabrejos-Azama J., Rodríguez C.R. et al. Magnesium substitution in brushite cements, Journal Materials Science and Engineering: C, 2013, vol. 33, issue 1, pp. 475-481. DOI: 10.1016/j.msec.2012.09.017.
6. Cui W., Wang S., Yang R., Zhang X. Hydrothermal synthesis of Mg-substituted tricalcium phosphate nanocrystals, MRS Communications, 2019, vol. 9, issue 3, pp. 971-978. DOI: 10.1557/mrc.2019.110.
7. Guo X., Long Y., Li W., Dai H. Osteogenic effects of magnesium substitution in nano-structured β-tricalcium phosphate produced by microwave synthesis, Journal of Materials Science, 2019, vol. 54, issue 16, pp. 11197-11212. DOI: 10.1007/s10853-019-03674-7.
8. Roy M., Fielding G.A., Bandyopadhyay A., Bose S. Effects of zinc and strontium substitution in tricalcium phosphate on osteoclast differentiation and resorption, Biomaterials Science, 2013, vol. 1, issue 1, pp. 74-82. DOI: 10.1039/c2bm00012a.
9. Myasnikova N.A. Metody i sredstva issledovaniya struktury i svojstv nanomaterialov i pokrytij s nanostrukturoj [Methods and means for studying the structure and properties of nanomaterials and coatings with nanostructure]. Rostov-on-Don, Rostov State Transport University Publ., 2017, 157 р. (In Russian).
10. Askhabov A.M. Novye idei v teorii obrazovaniya kristallicheskikh zarodyshej (obzor) [New ideas in the theory of formation of crystalline nuclei] // Izvestiya Komi nauchnogo centra UrO RAN. [Proceedings of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences], 2019, vol. 2, no. 38, рр. 51-60. (In Russian).
11. Linnikov O.D. Mechanism of precipitate formation during spontaneous crystallization of salts from supersaturated aqueous solutions, Russian Chemical Reviews, 2014, vol. 83, issue 4, рр. 343-364. DOI: 10.1070/RC2014v083n04ABEH004399.
12. Nanev C.N. Evaluation of the critical nucleus size without using interface free energy, Journal of Crystal Growth, 2020, vol. 535, art. no. 125521, 3 p. DOI: 10.1016/j.jcrysgro.2020.125521.
13. Gorichev I.G., Izotov A.D., Gorichev A.I. et al. Analiz kineticheskikh dannykh rastvoreniya oksidov metallov s pozitsij fraktal'noj geometrii [Analysis of the kinetic data of the dissolution of metal oxides from the standpoint of fractal geometry], Zhurnal fizicheskoj khimii [Russian Journal of Physical Chemistry A], 1999, vol. 71, no. 10, рр. 1802-1808. (In Russian).
14. Kiselev V.M., Golovanova O.A., Fedoseev V.B. The fractal analysis method for the study of hydroxylapatite crystallization process, Applied Solid State Chemistry, 2018, no. 3, рр. 46-51. DOI: DOI: 10.18572/2619-0141-2018-3-4-46-51.
15. Thongboonkerd, V. Should urine pH be adjusted prior to gel-based proteome analysis?, Journal of Proteome Research, 2009, vol. 8, issue 6, pp. 3206-3211. DOI: 10.1021/pr900127x.
16. Fleming D.E. A comparative study of the adsorbtion of amino acids on to calcium minerals found in renal calculi, Clinical Science, 2001, vol. 101, issue 2, рр. 159-168.
17. Salamanna F., Giavaresi G., Parrilli A. et al. Antiresorptive properties of strontium substituted and alendronate functionalized hydroxyapatite nanocrystals in an ovariectomized rat spinal arthrodesis model, Journal Materials Science and Engineering: C, 2017, vol. 95, pp. 355-362. DOI: 10.1016/j.msec.2017.11.016.
18. Voda pit'evaya. Metod opredeleniya soderzhaniya polifosfatov: GOST 18309-72 [Drinking water. Method for determination of polyphosphate content: State Standard 18309-72]. Moscow, Gosstandart USSR Publ., 1972. 5 p. (in Russian).
19. Golovanova O.A., Kiselev V.M. Fraktal'naya razmernost' kristallicheskikh struktur gidroksilapatita, poluchennogo osazhdeniem iz vodnogo rastvora v prisutstvii dobavok [Fractal dimension of crystalline structures of hydroxyapatite obtained by precipitation from an aqueous solution in the presence of additives]. Database RF, no. 2020620022, 2020. (In Russian).
20. Lur'e Yu.Yu. Spravochnik po analiticheskoj khimii [Handbook of analytical chemistry], Moscow, Chemistry Publ., 1989, 448 р. (In Russian).
21. Ressler A., Cvetnić M., Antunović M. et al. Strontium substituted biomimetic calcium phosphate system derived from cuttlefish bone, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2020, vol. 108, issue 4, pp. 1697-1709. DOI: 10.1002/jbm.b.34515.
22. Zhang J., Wu H., He F. et al. Concentration-dependent osteogenic and angiogenic biological performances of calcium phosphate cement modified with copper ions, Journal Materials Science and Engineering:C, 2019, vol. 99, pp. 1199-1212. DOI: 10.1016/j.msec.2019.02.042.