Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Stabilization of amorphous calcium phosphate in the structure of hydroxyapatite during liquid-phase synthesis

I.E. Glazov, V.K. Krut’ko, O.N. Musskaya, A.I. Kulak

Institute of General and Inorganic Chemistry of the NAS of Belarus

DOI: 10.26456/pcascnn/2024.16.815

Original article

Abstract: Amorphized hydroxyapatite with stabilized inclusions of amorphous calcium phosphate was obtained by a wet synthesis at pH 11. Reliable indicators of the presence of amorphous calcium phosphate in the hydroxyapatite structure includes: 1) peaks of α-tricalcium phosphate in the X-Ray Diffraction patterns after 800°C; 2) a pronounced exoeffect of crystallization of the amorphous phase at 600-850°C in the thermograms. Crystallization of amorphous calcium phosphate into α-tricalcium phosphate is inhibited by the effect of intercluster water (0,5 molecules per cluster). Under wet synthesis conditions, the key factor in stabilizing up to 16% of amorphous inclusions is a high supersaturation of the reaction medium, ensured by the mixing rate of reagent solutions of ~10-1 mol/s. The high supersaturation of the reaction medium promotes the formation of a hydroxyapatite shell around the core of amorphous calcium phosphate. The hydroxyapatite shell provides stabilization of the amorphous phase toward interaction with the mother solution for 30 days and inhibits the allotropic (α→β)-tricalcium phosphate transition at 800°C.

Keywords: amorphous calcium phosphate, wet synthesis, hydroxyapatite, core-shell, biphasic calcium phosphates

  • Ilya E. Glazov – Ph. D., Senior Researcher, Laboratory of Photochemistry and Electrochemistry, Institute of General and Inorganic Chemistry of the NAS of Belarus
  • Valentina K. Krut’ko – Ph. D., Assistant Professor, Head of the Laboratory of Photochemistry and Electrochemistry, Institute of General and Inorganic Chemistry of the NAS of Belarus
  • Olga N. Musskaya – Ph. D., Assistant Professor, Leading Researcher, Laboratory of Photochemistry and Electrochemistry, Institute of General and Inorganic Chemistry of the NAS of Belarus
  • Anatoly I. Kulak – Academician, D. Sc., Professor, Director, Institute of General and Inorganic Chemistry of the NAS of Belarus

Reference:

Glazov, I.E. Stabilization of amorphous calcium phosphate in the structure of hydroxyapatite during liquid-phase synthesis / I.E. Glazov, V.K. Krut’ko, O.N. Musskaya, A.I. Kulak // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 815-825. DOI: 10.26456/pcascnn/2024.16.815. (In Russian).

Full article (in Russian): download PDF file

References:

1. Schilling A.F., Linhart W., Filke S. et al. Resorbability of bone substitute biomaterials by human osteoclasts, Biomaterials, 2004, vol. 25, issue 18, pp. 3963-3972. DOI: 10.1016/j.biomaterials.2003.10.079.
2. Dorozhkin S.V. Calcium orthophosphates (CaPO4): occurrence and properties, Progress in Вiomaterials, 2016, vol. 5, issue 1, pp. 9-70. DOI: 10.1007/s40204-015-0045-z.
3. Kickelbick G. Hybrid materials–past, present and future, Hybrid materials, 2014, vol. 1, issue 1, pp. 39-51. DOI: 10.34657/541.
4. LeGeros R.Z., Lin S., Rohanizadeh R., Mijares D. et al. Biphasic calcium phosphate bioceramics: preparation, properties and applications, Journal of Material Science: Materials in Medicine, 2003, vol. 14, issue 3, pp. 201-209. DOI: 10.1023/A:1022872421333.
5. Li Y., Weng W., Tam K.C. Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate, Acta Biomaterialia, 2007, vol. 3, issue 2, pp. 251-254. DOI: 10.1016/j.actbio.2006.07.003.
6. Yang, X., Wang Z. Synthesis of biphasic ceramics of hydroxyapatite and β-tricalcium phosphate with controlled phase content and porosity, Journal of Materials Chemistry, 1998, vol. 8, issue 10, pp. 2233–2237. DOI: 10.1039/A802067A.
7. Dorozhkin S.V. Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications, Ceramics International, 2016, vol. 42, issue 6, pp. 6529-6554. DOI: 10.1016/j.ceramint.2016.01.062.
8. Glazov I.E., Krut’ko V.K., Musskaya O.N., Kulak A.I. Calcium phosphate apatites: wet formation, thermal transformations, terminology, and identification, Russian Journal of Inorganic Chemistry, 2022, vol. 67, issue 2, pp. 173-182. DOI: 10.1134/S0036023622020048.
9. Glazov I.E., Krut’ko V.K., Safronova T.V. et al. Formation of hydroxyapatite-based hybrid materials in the presence of platelet-poor plasma additive, Biomimetics, 2023, vol. 8, issue 3, art. no. 297, 12 p. DOI: 10.3390/biomimetics8030297.
10. Doebelin N., Kleeberg R. Profex: a graphical user interface for the Rietveld refinement program BGMN, Journal of Applied Crystallography, 2015, vol. 48, issue 5, pp. 1573-1580. DOI: 10.1107/S1600576715014685.
11. Combes C., Rey C.C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials, Acta Biomaterialia, 2010, vol. 6, issue 9, pp. 3362-3378. DOI: 10.1016/j.actbio.2010.02.017.
12. Hurle K., Neubauer J., Bohner M. et al. Calorimetry investigations of milled α-tricalcium phosphate powders to determine the formation enthalpies of α-TCP and X-ray amorphous tricalcium phosphate, Acta Biomaterialia, 2015, vol. 23, pp. 338-346. DOI: 10.1016/j.actbio.2015.05.026.
13. Martin R.I., Brown P.W. Aqueous formation of hydroxyapatite, Journal of Biomedical Materials Research, 1997, vol. 35, issue 3, pp. 299-308. DOI: 10.1002/(SICI)1097-4636(19970605)35:3<299::AID-JBM4>3.0.CO;2-C.
14. Montes-Hernandez G., Renard F. Nucleation of brushite and hydroxyapatite from amorphous calcium phosphate phases revealed by dynamic in situ Raman spectroscopy, Journal of Physical Chemistry C, 2020, vol. 124, issue 28, pp. 15302-15311. DOI: 10.1021/acs.jpcc.0c04028.
15. Huang Y., Huang W., Sun L. et al. Phase transition from α‐TCP into β‐TCP in TCP/HA composites, International Journal of Applied Ceramic Technology, 2010, vol. 7, issue 2, pp. 184-188. DOI: 10.1111/j.1744-7402.2009.02384.x.
16. Vani R., Girija E.K., Elayaraja K. et al., Hydrothermal synthesis of porous triphasic hydroxyapatite/(α and β) tricalcium phosphate, Journal of material science: Materials in Medicine, 2009, vol. 20, pp. 43-48. DOI: 10.1007/s10856-008-3480-8.
17. Maggioni G.M., Mazzotti M. Modelling the stochastic behaviour of primary nucleation, Faraday Discussions, 2015, vol. 179, pp. 359-382. DOI: 10.1039/C4FD00255E.
18. Zhang H., Zhang M. Characterization and thermal behavior of calcium deficient hydroxyapatite whiskers with various Ca/P ratios, Materials Chemistry and Physics, 2011, vol. 126, issue 3, P. 642-648. DOI: 10.1016/j.matchemphys.2010.12.067.
19. Gross K.A., Gross V., Berndt C.C. Thermal analysis of amorphous phases in hydroxyapatite coatings, Journal of American Ceramic Society, 1998, vol. 81, no. 1, pp. 106-112. DOI: 10.1111/j.1151-2916.1998.tb02301.x.
20. Locardi B., Pazzaglia U.E., Gabbi C. et al. Thermal behaviour of hydroxyapatite intended for medical applications, Biomaterials, 1993, vol. 14, issue 6, pp. 437-441. DOI: 10.1016/0142-9612(93)90146-S.
21. Destainville A., Champion E., Bernache-Assollant D., Laborde E. Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate, Materials Chemistry and Physics, 2003, vol. 80, issue 1, pp. 269-277. DOI: 10.1016/S0254-0584(02)00466-2.
22. Addai‐Mensah J., Li J., Prestidge C.A. Aggregation behaviour of gibbsite crystals in supersaturated sodium and potassium aluminate liquors, Developments in Chemical Engineering and Mineral Processing, 2002, vol. 10, issue 5-6, pp. 539-551. DOI: 10.1002/apj.5500100607.
23. Jiang S., Jin W., Wang Y.N. et al. Effect of the aggregation state of amorphous calcium phosphate on hydroxyapatite nucleation kinetics, RSC Advances, 2017, vol. 7, issue 41, pp. 25497-25503. DOI: 10.1039/C7RA02208E.

⇐ Prevoius journal article | Content | Next journal article ⇒