ZnO/Zn2SnO4 nanorod heterostructure coatings for effective detection of acetone
C.D. Bui1, S.S. Nalimova1, Z.V. Shomakhov2, A.M. Guketlov2, S.S. Buzovkin1, A.A. Rybina1
1 Saint Petersburg Electrotechnical University «LETI»
2 Kabardino-Balkarian State University named after H.M. Berbekov
DOI: 10.26456/pcascnn/2024.16.794
Original article
Abstract: Type II ZnO/Zn2SnO4 heterostructure was considered for gas sensor applications. ZnO nanorods surrounded by a Zn2SnO4 shell were grown on the surface of BI2 substrate with sputtered electrical contacts (sensor plat-form) by the hydrothermal synthesis method. Gas-sensitive properties were investigated on different gas analytes (isopropanol, ethanol, and acetone) using a combined laboratory setup allowing for resistivity response and electrical impedance spectroscopy measurements. At an operating temperature of 150°C, the sample showed optimum sensitivity to acetone (1000 ppm) and the Ra/Rg ratio reached a value of 11. The variation of the impedance plot based on the results of measurements in the presence of acetone vapors at an operating temperature of 200°C shows consistent changes. This operating temperature showed a clearer optimization compared to other studies where the sensor operating temperature ranged from 300 to 450°C. In addition, the energy band diagram of the ZnO/Zn2SnO4 heterostructure was presented and the acetone detection mechanism was discussed. The structure of the ZnO/Zn2SnO4 nanorods causes an improved response due to the chemisorption of oxygen on the surface of the Zn2SnO4 shells.
Keywords: zinc oxide, zinc stannate, hydrothermal method, gas sensor, acetone detection, ZnO/Zn2SnO4
- Cong D. Bui – 2nd year postgraduate student, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»
- Svetlana S. Nalimova – Ph. D., Docent, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»
- Zamir V. Shomakhov – Ph. D., Director of the Institute of artificial intelligence and digital technologies, Kabardino-Balkarian State University named after H.M. Berbekov
- Aslan M. Guketlov – 2nd year graduate student, Department of Electronics and Digital Information Technologies, Kabardino-Balkarian State University named after H.M. Berbekov
- Sergey S. Buzovkin – 4th year student, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»
- Arina A. Rybina – 4th year student, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»
Reference:
Bui, C.D. ZnO/Zn2SnO4 nanorod heterostructure coatings for effective detection of acetone / C.D. Bui, S.S. Nalimova, Z.V. Shomakhov, A.M. Guketlov, S.S. Buzovkin, A.A. Rybina // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 794-804. DOI: 10.26456/pcascnn/2024.16.794. (In Russian).
Full article (in Russian): download PDF file
References:
1. Al-Hardan N.H., Aziz A.A., Abdullah M.J., Ahmed N.M. Conductometric gas sensing based on ZnO thin films: an impedance spectroscopy study, ECS Journal of Solid State Science and Technology, 2018, vol. 7, no. 9, pp. P487-P490. DOI: 10.1149/2.0201809jss.
2. Verma A., Yadav D., Natesan S. et al. Advancements in nanohybrid material-based acetone gas sensors relevant to diabetes diagnosis: a comprehensive review, Microchemical Journal, 2024, vol. 201, art. no. 110713, 32 p. DOI: 10.1016/j.microc.2024.110713.
3. Han G., Kang M., Jeong Y. et al. Thermal evaporation synthesis of vertically aligned Zn2SnO4/ZnO radial heterostructured nanowires array, Nanomaterials (Basel, Switzerland), 2021, vol. 11, issue 6, art. no. 1500, 9 p. DOI: 10.3390/nano11061500.
4. Nalimova S.S., Kondratev V.M., Ryabko A.A. et al. Study of sensor properties of zinc oxide based nanostructures, Journal of Physics: Conference Series, 2020, vol. 1658, issue 1, art. no. 012033, 5 p. DOI: 10.1088/1742-6596/1658/1/012033.
5. Kondratev V.M., Bolshakov A.D., Nalimova S.S. Technologically feasible ZnO nanostructures for carbon monoxide gas sensing, 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 26-29 January 2021, St. Petersburg, Moscow, Russia, IEEE Publ., 2021, pp. 1163-1166. DOI: 10.1109/ElConRus51938.2021.9396573.
6. Choi M.S., Kim M.Y., Mirzaei A. et al. Selective, sensitive, and stable NO2 gas sensor based on porous ZnO nanosheets, Applied Surface Science, 2021, vol. 568, art. no. 150910, 14 p. DOI: 10.1016/j.apsusc.2021.150910.
7. Karpova S.S., Moshnikov V.A., Maksimov A.I. et al. Study of the effect of the acid-base surface properties of ZnO, Fe2O3 and ZnFe2O4 oxides on their gas sensitivity to ethanol vapor, Semiconductors, 2013, vol. 47, issue 8, pp. 1026-1030. DOI: 10.1134/S1063782613080095.
8. Shomakhov Z.V., Nalimova S.S., Rybina A.A. et al. Uluchshenie sensornykh kharakteristik binarnykh i trojnykh oksidnykh nanosistem [Improving the sensor characteristics of binary and ternary oxide nanosystems], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 879-887. DOI: 10.26456/pcascnn/2023.15.879. (In Russian).
9. Nalimova S.S., Moshnikov V.A., Shomakhov Z.V., Kondratev V.M. Gazovye sensory na osnove nanostruktur dvojnykh i trojnykh oksidnykh sistem [Gas sensors based on nanostructures of binary and ternary oxide systems], Izvestiya Vysshikh Uchebnykh Zavedenii Rossii. Radioelektronika [Journal of the Russian Universities. Radioelectronics], 2024, vol. 27, no. 2, pp. 105-118. DOI: 10.32603/1993-8985-2024-27-2-105-118. (In Russian).
10. Pang C., Yan B., Liao L. et al. Synthesis, characterization and opto-electrical properties of ternary Zn2SnO4 nanowires, Nanotechnology, 2010, vol. 21, no. 46, art. no. 465706, 4 p. DOI: 10.1088/0957-4484/21/46/465706.
11. He L., Luan C., Di Wang et al. Preparation and characterization of heteroepitaxial Zn2SnO4 single crystalline films prepared on MgO (100) substrates, Journal of the American Ceramic Society, 2020, vol. 103, issue 4, pp. 2555-2561. DOI: 10.1111/jace.16943.
12. Ryabko A.A., Bobkov A.A., Nalimova S.S. et al. Gas sensitivity of nanostructured coatings based on zinc oxide nanorods under combined activation, Technical Physics, 2023, vol. 68, issue 1 supplement, pp. S13-S18. DOI: 10.1134/S106378422390053X.
13. Tharsika T., Haseeb A., Akbar S.A. et al. Gas sensing properties of zinc stannate (Zn2SnO4) nanowires prepared by carbon assisted thermal evaporation process, Journal of Alloys and Compounds, 2015, vol. 618, pp. 455-462. DOI: 10.1016/j.jallcom.2014.08.192.
14. Bao S., Wu J., He X. et al. Mesoporous Zn2SnO4 as effective electron transport materials for high-performance perovskite solar cells, Electrochimica Acta, 2017, vol. 251, pp. 307-315. DOI: 10.1016/j.electacta.2017.08.083.
15. Fan H., Xu S., Cao X. et al. Ultra-long Zn2SnO4-ZnO microwires based gas sensor for hydrogen detection, Applied Surface Science, 2017, vol. 400, pp. 440-445. DOI: 10.1016/j.apsusc.2016.12.221.
16. He F., Du Q., Zhang Y. et al. One-step solvothermal synthesis of Zn2SnO4/rGO composite material and highly gas sensing performance to acetone, Solid State Sciences, 2024, vol. 155, art. no. 107638, 7 p. DOI: 10.1016/j.solidstatesciences.2024.107638.
17. Yang X., Gao H., Zhao L. et al. Enhanced gas sensing properties of monodisperse Zn2SnO4 octahedron functionalized by PdO nanoparticals, Sensors and Actuators B: Chemical, 2018, vol. 266, pp. 302-310. DOI: 10.1016/j.snb.2018.03.121.
18. Zhang D., Wu Z., Zong X., Zhang Y. Fabrication of polypyrrole/Zn2SnO4 nanofilm for ultra-highly sensitive ammonia sensing application, Sensors and Actuators B: Chemical, 2018, vol. 274, pp. 575-586. DOI: 10.1016/j.snb.2018.08.001.
19. Lu J., Xie Y., Luo F. et al. Heterostructures of mesoporous hollow Zn2SnO4/SnO2 microboxes for high- performance acetone sensors, Journal of Alloys and Compounds, 2020, vol. 844, art. no. 155788, 8 p. DOI: 10.1016/j.jallcom.2020.155788.
20. Bobkov A., Luchinin V., Moshnikov V. et al. Impedance spectroscopy of hierarchical porous nanomaterials based on por-Si, por-Si incorporated by Ni and metal oxides for gas sensors, Sensors (Basel, Switzerland), 2022, vol. 22, issue 4, art. no. 1530, 14 p. DOI: 10.3390/s22041530.
21. Kondratev V.M., Vyacheslavova E.A., Shugabaev T. et al. Si nanowire-based Schottky sensors for selective sensing of NH3 and HCl via impedance spectroscopy, ACS Applied Nano Materials, 2023, vol. 6, issue 13, pp. 11513-11523. DOI: 10.1021/acsanm.3c01545.
22. Shomakhov Z.V., Nalimova S.S., Kondratev V.M. et al. Changes in the energy of surface adsorption sites of ZnO doped with Sn, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2023, vol. 17, issue 4, pp. 898-902. DOI: 10.1134/S1027451023040316.
23. Shomakhov Z.V., Nalimova S.S., Shurdumov B.Z. et al. Nanostruktury stannata tsinka dlya gazovykh sensorov s vysokim bystrodejstviem [Zinc stannate nanostructures for fast response gas sensors], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 726-735. DOI: 10.26456/pcascnn/2022.14.726 (In Russian).
24. Nalimova S.S., Shomakhov Z.V., Moshnikov V.A. et al. An x-ray photoelectron spectroscopy study of zinc stannate layer formation, Technical Physics, 2020, vol. 65, issue 7, pp. 1087-1090. DOI: 10.1134/S1063784220070142.