Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Study of the possibility of obtaining composites based on nanoscale hydroxyapatite reinforced with titanium oxide and calcium fluoride

E.A. Bogdanova1,2, V.M. Skachkov1, K.V. Nefedova1

1 Institute of Solid State Chemistry of the Ural Branch of RAS
2 JSC Giredmet

DOI: 10.26456/pcascnn/2024.16.779

Original article

Abstract: The article discusses the possibility of obtaining a hardened composite material with a porous structure based on nanostructured hydroxyapatite (HAP) synthesized by precipitation from a solution. The new material by the mechanochemical synthesis of hydroxyapatite with aluminum, silicon, nickel, hafnium and titanium was obtained. The synthesized samples are certified using modern physical and chemical methods of analysis. The influence of the qualitative and quantitative composition of the composite on the sintering processes and the strength characteristics of the studied samples is shown. It has been experimentally established that the Ca10(PO4)6(OH)2 – 15%CaF2-15%TiOx. system is the most promising for the development of biocomposites based on it. Composite materials of this composition have a dense uniform structure with a high degree of crystallinity, with developed porosity, and are a promising material for further research in order to introduce it into medical practice. The possibility of practical application of the obtained composite material as a component of a bioactive coating is evaluated. A patent application has been filed for the developed composite material.

Keywords: hydroxyapatite, fluorapatite, titanium oxide, calcium fluoride, sintering, composite biomaterials, microhardness, bioactive coating

  • Ekaterina A. Bogdanova – Ph. D., Senior Researcher, Laboratory of heterogeneous processes chemistry, Institute of Solid State Chemistry of the Ural Branch of RAS, Leading Researcher, Laboratory of electrochemical devices for hydrogen energy JSC Giredmet
  • Vladimir M. Skachkov – Ph. D., Senior Researcher, Laboratory of heterogeneous processes chemistry, Institute of Solid State Chemistry of the Ural Branch of RAS
  • Ksenia V. Nefedova – Ph. D., Senior Researcher, Laboratory of promising and functional materials for CCS, Institute of Solid State Chemistry of the Ural Branch of RAS

Reference:

Bogdanova, E.A. Study of the possibility of obtaining composites based on nanoscale hydroxyapatite reinforced with titanium oxide and calcium fluoride / E.A. Bogdanova, V.M. Skachkov, K.V. Nefedova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 779-793. DOI: 10.26456/pcascnn/2024.16.779. (In Russian).

Full article (in Russian): download PDF file

References:

1. Mondal S., Park S., Choi J. et al. Hydroxyapatite: A journey from biomaterials to advanced functional materials, Advances in Colloid and Interface Science, 2023, vol. 321, art. no. 103013, 27 p. DOI: 10.1016/j.cis.2023.103013.
2. Barinov S.M., Komlev V.S. Biokeramika na osnove fosfatov kal'tsiya [Calcium phosphate bioceramics]. Moscow, Nauka Publ., 2006, 204 p. (In Russian).
3. Zhou H., Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomaterialia, 2011, vol. 7, issue 7, pp. 2769-2781. DOI: 10.1016/j.actbio.2011.03.019.
4. Wang H.X., Guan S.K., Wang X., Ren C.X., Wang L.G. In vitro degradation and mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process, Acta Biomaterialia, 2010, vol. 6, issue 5, pp. 1743-1748. DOI: 10.1016/j.actbio.2009.12.009.
5. John K.R.St. 2 - Mechanical biocompatibility of dental materials, Biocompatibility of Dental Biomaterials; Woodhead Publishing Series in Biomaterials, 2017, pp. 9-21. DOI: 10.1016/B978-0-08-100884-3.00002-3.
6. Kim H-W., Noh Y-J., Koh Y-H., Kim H-E., Kim H-M. Effect of CaF2 on densification and properties of hydroxyapatite–zirconia composites for biomedical applications, Biomaterials, 2002, vol. 23, issue 20, pp. 4113-4121. DOI: 10.1016/s0142-9612(02)00150-3.
7. Guidara A., Chaari K., Fakhfakh S., Bouaziz J. The effects of MgO, ZrO2 and TiO2 as additives on microstructure and mechanical properties of Al2O3–FAP composite, Materials Chemistry and Physics, 2017, vol. 202, pp. 358-368. DOI: 10.1016/j.matchemphys.2017.09.039.
8. Htun Z.L., Ahmad N., Thant A.A., Noor A.-F.M. Characterization of CaOZrO2 reinforced hap biocomposite for strength and toughness improvement, Procedia Chemistry, 2016, vol. 19, pp. 510-516. DOI:10.1016/j.proche.2016.03.046.
9. Mobasherpour I., Solati Hashjin M., Razavi Toosi S.S., Darvishi Kamachali R. Effect of the addition ZrO2–Al2O3 on nanocrystalline hydroxyapatite bending strength and fracture toughness, Ceramics International, 2009, vol. 35, issue 4, pp. 1569-1574. DOI: 10.1016/j.ceramint.2008.08.017.
10. Placido F., McLean A., Ogwu A.A., Ademosu W. Titanium dioxide coatings for medical devices, Surgical Tools and Medical Devices, ed. by M.J. Jackson, W. Ahmed. Cham, Springer, 2016, pp. 81-91. DOI: 10.1007/978-3-319-33489-9_3.
11. Rempel S.V., Eselevich D.A., Gerasimov E.Yu., Valeeva A.A. Impact of titanium monoxide stoichiometry and heat treatment on the properties of TiOy/HAp nanocomposite, Journal of Alloys and Compounds, 2019, vol. 800, pp. 412-418. DOI: 10.1016/j.jallcom.2019.06.057.
12. Rempel S.V., Bogdanova Е.А., Valeeva А.А. et al. The effect of substoichiometric nanocrystalline titanium monoxide (TiOy) additions on the strength properties of hydroxyapatite (HAp), Inorganic Materials. 2016, vol. 52, issue 5, pp. 476-482. DOI: 10.1134/S0020168516050137.
13. Rempel S.V., Valeeva А.А., Bogdanova Е.А. et al. Vacuum-made nanocomposite of low-temperature hydroxyapatite (HAp) and hard nonstoichiometric titanium monoxide (TiOy) with enhanced mechanical properties, Mendeleev Communications, 2016, vol. 26, issue 6, pp. 543-545. DOI: 10.1016/j.mencom.2016.11.029.
14. Farzin A., Ahmadian M., Fathi M.H. Comparative evaluation of biocompatibility of dense nanostructured and microstructured hydroxyapatite/titania composites, Materials Science and Engineering: C, 2013, vol. 33, issue 4, pp. 2251-2257. DOI: 10.1016/j.msec.2013.01.053.
15. Khalajabadi S.Z., Ahmad N., Izman S. et al. In vitro biodegradation, electrochemical corrosion evaluations and mechanical properties of an Mg/HA/TiO2 nanocomposite for biomedical applications, Journal of Alloys and Compounds, 2017, V. 696, pp. 768-781. DOI: 10.1016/j.jallcom.2016.11.106.
16. He Y., Zhang Y., Jiang Y., Zhou R., Zhang J. Microstructure evolution, electrochemical properties and in-vitro properties of Ti-Nb-Zr based biocomposite by hydroxyapatite bioceramic, Journal of Alloys and Compounds, 2018, V. 764, pp. 987-1002. DOI: 10.1016/j.jallcom.2018.06.132.
17. Chen Y., Miao X. Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents, Biomaterials, 2005, vol. 26, issue 11, pp. 1205-1210. DOI: 10.1016/j.biomaterials.2004.04.027.
18. Zang M., Li L., Sun X. et al. Characterization, mechanical properties, corrosion behavior and bone-like apatite formation ability of fluorine substituted hydroxyapatite coating, Journal of the Mechanical Behavior of Biomedical Materials, 2024, vol. 151, art. no. 106364, 8 p. DOI: 10.1016/j.jmbbm.2023.106364.
19. Pankratov A.S., Fadeeva I.S., Minaychev V.V. et al. Problemy biointegracii micro i nanokristallichekogo gidroksiapatita i podkhody k ikh resheniyu [A biointegration of micro and nanocrystalline hydroxyapatite: problems and perspectives], Geny i kletki [Genes and Cells], 2018, vol. 13, No 3, pp. 46-51. DOI: 10.23868/201811032. (In Russian).
20. Sabirzyanov N.A., Bogdanova E.A., Khonina T.G. Sposob polucheniya suspenzii gidroksiapatita [A method of obtaining a suspension of hydroxyapatite]. Patent RF, no. 2406693, 2010. (In Russian).
21 Sabirzyanov N.A., Bogdanova E.A., Skachkov V.M. Sposob polucheniya suspenzii apatita [Method of preparing apatite suspension]. Patent RF, no. 2652193, 2018. (In Russian).
22. Pereverzev D.I., Bogdanova E.A., Nefedova K.V. Poluchenie biokompozitov na osnove nanorazmernogo gidroksiapatita, dopirovannogo oksidom cirkoniya i ftoridom kal'ciya [Creating biocomposites based on nano- sized hydroxyapatite doped with zirconium oxide and calcium fluoride], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 697-705. DOI: 10.26456/pcascnn/2020.12.697. (In Russian).
23. Bogdanova E.A., Skachkov, Nefedova K.V. Poluchenie biokomozitov na osnove nanorazmernogo gidroksiapatita s soedineniyami titana [Preparation of biocomposites based on nanoscale hydroxyapatite with titanium compounds], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 521-530. DOI: 10.26456/pcascnn/2022.14.521. (In Russian).
24. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url: https://www.icdd.com/pdf-2/ (accessed 15.02.2024).
25. Bogdanova E.A., Skachkov V.М., Medyankina I.S. et al. Formation of nanodimensional structures in precipitated hydroxyapatite by fluorine substitution, SN Applied Sciences, 2020, vol. 2, issue 9, art. no. 1565, 7 p. DOI: 10.1007/s42452-020-03388-5.
26. Zhelatin. Tekhnicheskie usloviya: GOST 11293-89 [Gelatin. Specifications], State Standard RF, no. 11293-89. Moscow, IPK Standartov Publ., 1989, 24 p. (in Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒