Investigation of transport properties of hydroxyapatite and its silicon-substituted derivatives
E.A. Bogdanova1,2, T.G. Khonina3, N.A. Sabirzyanov1
1 Institute of Solid State Chemistry of the Ural Branch of RAS
2 JSC Giredmet
3 I.Ya Postovsky Institute of Organic Synthesis Ural Branch of RAS
DOI: 10.26456/pcascnn/2024.16.767
Original article
Abstract: The article discusses the possibility of practical application of hydroxyapatite and silicon-substituted hydroxyapatite as components of medicines, pharmaceutical compositions, and biomaterials, the use of which is based on the transdermal delivery route of the active substance. The specific surface area, degree of dispersion and transport properties (transmucose permeability) of hydroxyapatite and silicon-substituted hydroxyapatite were estimated using some modern physicochemical methods of analysis. Particular attention is paid to the joint use of the studied substances and silicon glycerolates as a conductor with pronounced transcutaneous, penetrating properties, contributing to the accumulation of locally applied drugs in biological membranes (skin, mucosa, etc.) without disturbing its structure. It is shown that the transport properties that determine the effectiveness of the action depend on physico-chemical characteristics of these substances being penetrated. Diffusion transfer and the ability to control the processes taking place can be used for optimal design of drugs for targeted delivery through the skin and mucous membranes.
Keywords: hydroxyapatite, siliconsubstituted hydroxyapatite; siliconglycerolatas; transmucosal permeability
- Ekaterina A. Bogdanova – Ph. D., Senior Researcher, Laboratory of heterogeneous processes chemistry, Institute of Solid State Chemistry of the Ural Branch of RAS, Leading Researcher, Laboratory of electrochemical devices for hydrogen energy JSC Giredmet
- Tatyana G. Khonina – Dr. Sc., leading Researcher, Laboratory of Organic Materials, I.Ya Postovsky Institute of Organic Synthesis Ural Branch of RAS
- Nail A. Sabirzyanov – Dr. Sc., Chief Researcher, Head of the Laboratory of heterogeneous processes chemistry, Institute of Solid State Chemistry of the Ural Branch of RAS
Reference:
Bogdanova, E.A. Investigation of transport properties of hydroxyapatite and its silicon-substituted derivatives / E.A. Bogdanova, T.G. Khonina, N.A. Sabirzyanov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 767-778. DOI: 10.26456/pcascnn/2024.16.767. (In Russian).
Full article (in Russian): download PDF file
References:
1. Barinov S.M., Komlev V.S. Biokeramika na osnove fosfatov kal'tsiya [Calcium phosphate bioceramics]. Moscow, Nauka Publ., 2006, 204 p. (In Russian).
2. Dorozhkin S.V. Calcium orthophosphates, Journal of Materials Science, 2007, vol. 22, issue 4, pp. 1061-1095. DOI: 10.1007/s10853-006-1467-8.
3. Palmer L.C. Newcomb C.J., Kaltz S.R., Spoerke E.D., Stupp S.I. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel, Chemical Revew, 2008, vol. 108, issue 11, pp. 4754-4783. DOI: 10.1021/cr8004422.
4. Mondal S., Dorozhkin S.V., Pal U. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite, WIREs Nanomed Nanobiotechnol, 2018, vol. 10, issue 4, art. № e1504, 32 p. DOI: 10.1002/wnan.1504.
5. Mondal S., Park S., Choi J. et al. Hydroxyapatite: A journey from biomaterials to advanced functional materials, Advances in Colloid and Interface Science, 2023, vol. 321, art. no. 103013. 27 p. DOI: 10.1016/j.cis.2023.103013.
6. Collins M.N., Ren G., Young K. et al. Scaffold fabrication technologies and structure/function properties in bone tissue engineering, Advanced Functional Materials, 2021, vol. 31, issue 2, art. no. 2010609. 22 p. DOI: 10.1002/adfm.202010609.
7. Jurak M., Wiącek A.E., Ładniak A., Przykaza K., Szafran K. What affects the biocompatibility of polymers?, Advances in Colloid and Interface Science, 2021, vol. 294, art. no. 102451. 25 p. DOI: 10.1016/j.cis.2021.102451.
8. Civantos A., Martínez-Campos E., Ramos V. et al. Titanium coatings and surface modifications: toward clinically useful bioactive implants, ACS Biomaterials Science & Engineering, 2017, vol. 3, issue 7, pp. 1245-1261. DOI: 10.1021/acsbiomaterials.6b00604.
9. Chen F.-M., Liu X. Advancing biomaterials of human origin for tissue engineering, Progress in Polymer Science, 2016, vol. 53, pp. 86-168. DOI: 10.1016/j.progpolymsci.2015.02.004.
10. Jain P., Kathuria H., Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models, Biomaterials, 2022, vol. 287, art. no. 121639. 52 p. DOI: 10.1016/j.biomaterials.2022.121639.
11. Mondal S., Hoang G., Manivasagan P., Kim H., Oh J. Nanostructured hollow hydroxyapatite fabrication by carbon templating for enhanced drug delivery and biomedical applications, Ceramics International, 2019, vol. 45, issue 14, pp. 17081-17093. DOI: 10.1016/j.ceramint.2019.05.260.
12. Vallet-Regí M., Ruiz-Hernández E. Bioceramics: from bone regeneration to cancer nanomedicine, Advanced Materials, 2011, vol. 23, issue 44, pp. 5177-5218. DOI: 10.1002/adma.201101586.
13. Song Q., Jia J., Niu X. et al. An oral drug delivery system with programmed drug release and imaging properties for orthotopic colon cancer therapy, Nanoscale, 2019, vol. 11, issue 34, pp. 15958-15970. DOI: 10.1039/c9nr03802g.
14. Shan X., Zhao Z., Wang C. et al. Emerging prodrug-engineered nanomedicines for synergistic chemo-phototherapy, Chemical Engineering Journal, 2022, vol. 442, part 1, art. no. 136383. 17 p. DOI: 10.1016/j.cej.2022.136383.
15. Victor S.P., Paul W., Vineeth V. et al. Neodymium doped hydroxyapatite theranostic nanoplatforms for colon specific drug delivery applications, Colloids and Surfaces B: Biointerfaces, 2016, vol. 145, pp. 539-547. DOI: 10.1016/j.colsurfb.2016.05.067.
16. Shi P., Cheng Z., Zhao K. et al. Active targeting schemes for nano-drug delivery systems in osteosarcoma therapeutics, Journal of Nanobiotechnology, 2023, vol. 21, art. no. 103. 27 p. DOI: 10.1186/s12951-023-01826-1.
17. Sun W., Fan J., Wang S. et al. Biodegradable drug-loaded hydroxyapatite nanotherapeutic agent for targeted drug release in tumors, ACS Applied Materials & Interfaces, 2018, vol. 10, issue 9, pp. 7832-7840. DOI: 10.1021/acsami.7b19281.
18. Zhang S., Ma X., Sha D. et al. A novel strategy for tumor therapy: targeted, PAA-functionalized nano-hydroxyapatite
nanomedicine, Journal of Materials Chemistry B, 2020, vol. 8, issue 41, pp. 9589-9600. DOI: 10.1039/d0tb01603a.
19. Kargozar S., Mollazadeh S., Kermani F. et al. Hydroxyapatite nanoparticles for improved cancer theranostics, Journal of Functional Biomaterials, 2022, vol. 13, issue 3, art. no. 100. 27 p. DOI: 10.3390/jfb13030100.
20. Khonina T.G., Larionov L.P., Rusinov G.L., Suvorov A.L., Chupakhin O.N. Glitseraty kremniya, obladayushchie transkutannoj provodimost'yu medikamentoznykh sredstv, i glitserogidrogeli na ikh osnove [Silocon glycerates eliciting transcutaneous conductivity of medical agents and glycerohydrogels based on thereof ]. Patent RF, no. 2255939, 2005. (In Russian).
21. Khonina T.G., Chupakhin O.N., Nikitina E.Y. et al. Silicon-hydroxyapatite‒glycerohydrogel as a promising biomaterial for dental applications, Colloids and Surfaces B: Biointerfaces, 2020, vol. 189, art. no. 110851, 8 p. DOI: 10.1016/j.colsurfb.2020.110851.
22. Sabirzyanov N.A., Bogdanova E.A., Khonina T.G. Sposob polucheniya suspenzii gidroksiapatita [A method of obtaining a suspension of hydroxyapatite]. Patent RF, no. 2406693, 2010. (In Russian).
23. Yatsenko S.P., Sabirzyanov N.A., Sposob polucheniya hydroxyapatita [Way of obtaining hydroxyapatite]. Patent RF, no. 2104924, 1998. (In Russian).
24. Bogdanova, E.A. Fiziko-khimicheskie svojstva bioaktivnykh kompozitsionnykh materialov na osnove fosfatov kal'tsiya i kremnijorganicheskikh soedinenij [Physico-chemical properties of bioactive composite materials based on calcium phosphates and organosilicon compounds]. Cand. chem. sci. diss: 02.00.04. Yekaterinburg, Institute of solid state chemistry of UB RAS Publ., 2012. – 130 p. (In Russian).
25. Bogdanova E.A., Skachkov V.M. Issledovanie reologicheskikh svojstv gidroksiapatita i ftorapatita, nakhodyashchikhsya v kolloidnom sostoyanii [Investigation of rheological properties of hydroxyapatite and fluorapatite in colloidal state], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 11, pp. 525-534. DOI: 10.26456/pcascnn/2020.12.525. (In Russian).
26. Sabirzyanov N.A., Larionov L.P., Yatsenko S.P. et al. Sposob polucheniya ranozazhivlyayushchego i osteoplasticheskogo sredstva [Method for produsing wound-healing and osteoplastic means]. Patent RF, no. 2314107, 2008. (In Russian).
27. Sabirzyanov N.A., Khonina T.G., Yatsenko S.P. et al. Sredstvo dlya lecheniya vospalitelnykh zabolevanij parodonta [Means for treating patients for inflammatory periodontium diseases]. Patent RF, no. 2296556, 2007. (In Russian).
28. Mirsaev T.D., Zholudev S.E., Chupakhin O.N. et al. Sredstvo dlya fiksacii s’emnykh zubnykh protezov [Means for fixation of detachable dental prosthesis]. Patent RF, no. 2558934, 2015. (In Russian).