Synthesis and investigation of nanoscale magnesium carbonate stabilized with hyaluronic acid
A.V. Blinov, M.A. Pirogov, M.A. Yasnaya, A.S. Askerova, I.M. Shevchenko, S.V. Artyushin
North Caucasian Federal University
DOI: 10.26456/pcascnn/2024.16.746
Original article
Abstract: As part of this work, the synthesis and study of nanoscale magnesium carbonate stabilized with hyaluronic acid was carried out. At the first stage, quantum chemical simulation of the interaction of magnesium carbonate nanoparticles with hyaluronic acid was carried out, as a result of which it was found that the addition of hyaluronic acid forms an energetically advantageous and chemically stable interaction. The most energetically advantageous (∆E = 462,410 kcal/mol) and chemically stable (n = 0,091 eV) is the interaction through a carboxyl group attached to C6 of the glucuronic acid residue. The synthesis was carried out by mixing solutions of magnesium acetate and hyaluronic acid, adding a solution of ammonium carbonate drop by drop at a rate of 30 ml per minute, stirring for 10 minutes at 700-1000 rpm. Further, the obtained samples were centrifuged for 5 minutes at 3000 rpm in a five-fold repeat and dried at 110°C for 8 hours. The powders were examined by powder diffractometry, scanning electron microscopy and infrared spectroscopy. As a result of X-ray phase analysis, the phase composition of the obtained sample was determined: anhydrous magnesium carbonate, magnesium carbonate crystallohydrate, the mineral «Artinite». Scanning electron microscopy showed that the sample consists of rod-shaped particles with a length of 5 to 10 microns, consisting of nanoparticles with a diameter of 20 to 100 nm. The analysis of the infrared spectra of nanoscale magnesium carbonate stabilized with hyaluronic acid, hyaluronic acid and nanoscale magnesium carbonate without using a stabilizer showed that deformation plane oscillations of the O-H group are observed in the infrared spectrum of nanoscale magnesium carbonate stabilized withhyaluronic acid in the range from 1300 to 1400 cm-1, which allows us to conclude that the interaction of nanosized magnesium carbonate with hyaluronic acid occurs through the hydroxyl group.
Keywords: nanoscale magnesium carbonate, hyaluronic acid, powder diffractometry, scanning electron microscopy, IR spectroscopy
- Andrey V. Blinov – Ph. D., Associate Professor, Associate Professor of the Department of Physics and Technology of Nanostructures and Materials, North Caucasian Federal University
- Maxim A. Pirogov – Laboratory Assistant, Research Laboratory of Ceramics and Technochemistry of the Clean Zones Scientific Laboratory Complex, Faculty of Physics and Technology, North Caucasian Federal University
- Maria A. Yasnaya – Ph. D., Associate Professor, Associate Professor of the Department of Physics and Technology of Nanostructures and Materials, North Caucasian Federal University
- Alina S. Askerova – 3rd year student of the Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasian Federal University
- Irina M. Shevchenko – Ph. D., Associate Professor, Associate Professor of the Department of Physics and Technology of Nanostructures and Materials, North Caucasian Federal University
- Sergey V. Artyushin – 3rd year student of the Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasian Federal University
Reference:
Blinov, A.V. Synthesis and investigation of nanoscale magnesium carbonate stabilized with hyaluronic acid / A.V. Blinov, M.A. Pirogov, M.A. Yasnaya, A.S. Askerova, I.M. Shevchenko, S.V. Artyushin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 746-757. DOI: 10.26456/pcascnn/2024.16.746. (In Russian).
Full article (in Russian): download PDF file
References:
1. Popkov A.V. Biosovmestimyk implanty v tavmatologii i ortopedii (obzor literatury) [Biocompatible implants in traumatology and orthopaedics (A review of literature)], Genii ortopedii [The genius of orthopedics], 2014, no. 3, pp. 94-99.
2. Cieza A., Causey K., Kamenov K. et al. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019, The Lancet, 2020, vol. 396, issue 10267, pp. 2006-2017. DOI: 10.1016/S0140-6736(20)32340-0.
3. Kirilova I.A., Fomichev N.G., Podorozhnaya V.T., Trubnikov V.I. Novye vidy materialov dlya kostnoj plastiki v svete sovremennykh predstavlenij o kostnykh transplantatakh [New materials for bone grafting in view of current concepts], Khirurgiya Pozvonochnika [Russian Journal of Spine Surgery], 2007, no. 2, pp. 66-70. DOI: 10.14531/ss2007.2.66-70. (In Russian).
4. Glasdam S.-M., Glasdam S., Peters G.H. The importance of magnesium in the human body: a systematic literature review, Advances in Clinical Chemistry, ed. by G.S. Makowski, 2016, vol. 73, chapter 6, pp. 169-193. DOI: 10.1016/bs.acc.2015.10.002.
5. Marushko Yu.V., Asonov A.O., Hyschak T.V. Rol' magniya v organizme cheloveka i vliyanie snizhennogo soderzhaniya magniya na kachestvo zhizni detej s gastroezofageal'noj reflyuksnoj bolezn'yu [The role of magnesium in humans and the effect of reduced magnesium on the quality of life of children with gastro-esophageal reflux disease], Sovremennaya Pediatriya [Modern Pediatrics], 2019, no. 1, pp. 124-130, DOI: 10.15574/SP.2019.97.124. (In Russian).
6. Seo J.W., Park T.J. Magnesium metabolism, Electrolytes & Blood Pressure, 2008, vol. 6, issue 2, pp. 86-95. DOI: 10.5049/EBP.2008.6.2.86.
7. Gizinger O.A, Dadali V.A. Rol' magniya v protsessakh zhizneobespecheniya organizma: diagnostika defitsita magniya i ego dotatsiya s ispol'zovaniem mineral'nykh kompleksov [The role of magnesium in the life support of the body: diagnosis of magnesium deficiency and its supplement with mineral complexes], Terapevt (Therapist), 2021, no. 8, pp. 32-36, DOI: 10.33920/MED-12-2108-03.
8. Zoroddu M.A., Aaseth J., Crisponi G. et al. The essential metals for humans: a brief overview, Journal of Inorganic Biochemistry, 2019, vol. 195, pp. 120-129, DOI: 10.1016/j.jinorgbio.2019.03.013.
9. Bommala V.K., Krishna M.G., Rao C.T. Magnesium matrix composites for biomedical applications: A review, Journal of Magnesium and Alloys, 2019, vol. 7, issue 1, pp. 72-79, DOI: 10.1016/j.jma.2018.11.001.
10. Ångström S.F. Mesoporous magnesium carbonate: Synthesis, characterization and biocompatibility, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, Ph. D. Dissertation. Uppsala, Acta Universitatis Upsaliensis, 2016, 75 p.
11. Perederin Yu.V., Usol'tseva I.O., Krasnoshchekova D.V. Osnovnye tekhnologii polucheniya oksida magniya iz serpentinita [Basic technologies for obtaining magnesium oxide from serpentinite], Polzunovskiy Vestnik [Polzunovsky bulletin], 2019, no. 2, pp. 123-127. DOI: 10.25712/ASTU.2072-8921.2019.02.024. (In Russian).
12. Holyavka M.G., Pankova S.M., Artyukhov V.G. [Hyaluronic acid as a stabilizing agent for bromelain-based enzyme preparation], Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Khimiya. Biologiya. Farmatsiya [Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy], 2020, no. 4, pp. 91-95. (In Russian).
13. Savos'kin O., Semenova E., Rashevskaya E. et al. Kharakteristika razlichnykh metodov polucheniya gialuronovoj kisloty [A description of different methods used to obtain hyaluronic acid], Nauchnoe obozrenie. Biologicheskie nauki [Scientific Review. Biological sciences], 2017, no. 2, pp. 125-135. (In Russian).
14. Abatangelo G., Vindigni V., Avruscio G. et al. Hyaluronic acid: redefining its role, Cells, 2020, vol. 9, issue 7, art. № 1743, 19 p. DOI: 10.3390/cells9071743.
15. Papakonstantinou E., Roth M., Karakiulakis G. Hyaluronic acid: a key molecule in skin aging, Dermato-Endocrinology, 2012, vol. 4, issue 3, pp. 253-258. DOI: 10.4161/derm.21923.
16. Orekhova L.Yu., Loboda E.S., Yamanidze N.A., Galeeva A.R. Primenenie gialuronovoj kisloty v kompleksnom lechenii zabolevanij parodonta [The use (application) of hyaluronic acid in complex treatment of periodontal diseases], Periodontology [Parodontologiya], 2018, vol. 24, no. 3, pp. 25-30. DOI: 10.25636/PMP.1.2018.3.4. (In Russian).
17. IQmol Molecular Viewer. Available at: www.url: http://www.iqmol.org/ (accessed 12.06.2024).
18. Q-Chem 6.1 User’s Manual. Available at:https://manual.q-chem.com/latest/ (accessed 12.06.2024).
19. Suliz K.V., Sdobnyakov N.Yu, Pervikov A.V. Strukturno-fazovye sostoyaniya nanochastits CoMoFeNiCu, poluchennykh sovmestnym elektricheskim vzryvom provolochek [Structural-phase states of the multicomponent alloy nanoparticles CoMoFeNiCu produce by of joint exploding wires], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 861-868, DOI: 10.26456/pcascnn/2023.15.861.
20. Blinova A.A., Karamirzoev A.A., Guseynova A.R. et al. Synthesis and characterization of calcium silicate nanoparticles stabilized with amino acids, Micromachines, 2023, vol. 14, issue 2, art. no. 245, 12 p. DOI: 10.3390/mi14020245.
21. Alemasova N.V., Bugorskaya D.I., Burkhovetskii V.V. et al. Oksid grafita: osobennosti issledovaniya materiala fizicheskimi metodami [Graphite oxide: peculiarities of investigation of this material by physical methods], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 8-16, DOI: 10.26456/pcascnn/2023.15.008.
22. Blinov A.V., Pirogov M.A., Gvozdenko A.A. et al. Komp'yuternoe kvantovo-khimicheskoe modelirovanie vzaimodejstviya nanochastits selena s chetvertichnymi ammonievymi soedineniyami [Computer quantum-chemical modeling of the interaction of selenium nanoparticles with quaternary ammonium compounds], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 357-366, DOI: 10.26456/pcascnn/2023.15.357.