Metal membranes for hydrogen purification: problems, trends and prospects of application
V.A. Polukhin, S.Kh. Estemirova
Institute of Metallurgy of the Ural Branch of the RAS
DOI: 10.26456/pcascnn/2024.16.686
Review
Abstract: The problems associated with the global warming due to greenhouse gas emissions from human activities are driving the search for new technologies to reduce CO2 emissions from the fossil fuel combustion. Hydrogen is a clean and efficient energy carrier, so the hydrogen energy is considered as one of the strategic directions for the development of the energy security and sustainability. Although hydrogen can be produced by electrolysis of water, most of the hydrogen produced worldwide currently comes from steam reforming of natural gas, which must be purified to ultra-high purity for economic reasons. Traditional methods based on pressure swing absorption-desorption using cryogenic distillation are energy intensive, which motivates the development of new highly selective and energy efficient H2 purification technologies. Such technologies include rapidly developing membrane technology, which at the moment has not yet reached the level required for its widespread industrial application. In this review article, we analyze the main aspects of current research in the field of hydrogen purification technology using dense metal membranes, with an emphasis on their technological stability due to the selection of their chemical composition (including multicomponent) and optimization of the structural state. We also considered the prospects for further development and use of this technology for economic needs.
Keywords: membrane gas separation, hydrogen purification, BCC structure, FCC structure, high- entropy alloys, amorphous alloys, solubility, hydrogen permeability, diffusion, thermal stability, brittleness
- Valery A. Polukhin – Dr. Sc., Chief Researcher, Institute of Metallurgy of the Ural Branch of the RAS
- Svetlana Kh. Estemirova – Ph. D. Senior Researcher, Institute of Metallurgy of the Ural Branch of the RAS
Reference:
Polukhin, V.A. Metal membranes for hydrogen purification: problems, trends and prospects of application / V.A. Polukhin, S.Kh. Estemirova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 686-710. DOI: 10.26456/pcascnn/2024.16.686. (In Russian).
Full article (in Russian): download PDF file
References:
1. Bernardo G., Araújo T., Lopes T.S., Sousa J., Mendes A. Recent advances in membrane technologies for hydrogen purification, International Journal of Hydrogen Energy, 2020, vol. 45, issue 12, pp. 7313-7338. DOI: 10.1016/j.ijhydene.2019.06.162.
2. Palladium membrane technology for hydrogen production, carbon capture and other applications: principles, energy production and other applications, ed. by A. Doukelis, K. Panopoulos, A. Koumanakos, E. Kakaras, Woodhead Publishing Series in Energy, vol. 68. Amsterdam, Woodhead Publishing, 2014, 402 p. DOI: 10.1016/C2013-0-16496-3.
3. Ockwig N.W., Nenoff T.M. Membranes for hydrogen separation, Chemical Reviews, 2007, vol. 107, issue 10, pp. 4078-4110. DOI: 10.1021/cr0501792.
4. Yukawa H., Nambu T., Matsumoto Y. 13 - Design of group 5 metal-based alloy membranes with high hydrogen permeability and strong resistance to hydrogen embrittlement, Advances in Hydrogen Production, Storage and Distribution, ed. by A. Basile, A. Iulianelli, Woodhead Publishing Series in Energy, vol. 63. Amsterdam, Woodhead Publishing, 2014, pp. 341-367. DOI: 10.1533/9780857097736.3.341.
5. Stenina I., Yaroslavtsev A. Modern technologies of hydrogen production, Processes, 2023, vol. 11, issue 1, art. no. 56, 34 p. DOI: 10.3390/pr11010056.
6. Cerone N., Zito G.D., Florio C., Fabbiano L., Zimbardi F. Recent advancements in Pd-based membranes for hydrogen separation, Energies, 2024, vol. 17, issue 16, art. no. 4095, 15 p. DOI: 10.3390/en17164095.
7. Li P., Wang Z., Qiao Z. et al. Recent developments in membranes for efficient hydrogen purification, Journal of Membrane Science, 2015, vol. 495, pp. 130-168. DOI: 10.1016/j.memsci.2015.08.010.
8. Buxbaum R.E., Kinney A.B. Hydrogen transport through tubular membranes of palladium-coated tantalum and niobium, Industrial & Engineering Chemistry Research, 1996, vol. 35, issue 2, pp. 530-537. DOI: 10.1021/ie950105o.
9. Wipf H. Solubility and diffusion of hydrogen in pure metals and alloys, Physica Scripta, 2001, vol. 2001. no. T94, pp. 43-51. DOI: 10.1238/Physica.Topical.094a00043.
10. Lewis F.A. Solubility of hydrogen in metals, Pure and Applied Chemistry, 1990, vol. 62, no. 11, pp. 2091-2096. DOI: 10.1351/pac199062112091.
11. Paglieri S.N., Way J.D. Innovations in palladium membrane research, Separation and Purification Methods, 2002, vol. 31, issue 1, pp. 1-169. DOI: 10.1081/SPM-120006115.
12. Al-Mufachi N.A., Rees N.V., Steinberger-Wilkens R. Hydrogen selective membranes: a review of palladium-based dense metal membranes, Renewable and Sustainable Energy Reviews, 2015, vol. 47, pp. 540-551. DOI: 10.1016/j.rser.2015.03.026.
13. Rahimpour M.R., Samimi F., Babapoor A., Tohidian T., Mohebi S. Palladium membranes applications in reaction systems for hydrogen separation and purification: a review, Chemical Engineering and Processing: Process Intensification, 2017, vol. 121, pp. 24-49. DOI: 10.1016/j.cep.2017.07.021.
14. Bosko M.L., Fontana A.D., Cornaglia L., Tarditi A.M. New PdNiAu ternary alloys as potential material for hydrogen separation processes, International Journal of Hydrogen Energy, 2022, vol. 47, issue 22, pp. 11589-11600. DOI: 10.1016/j.ijhydene.2022.01.179.
15. Burkhanov G.S., Gorina N.B., Kol'chugina N.B., Roshan N.R. Splavy palladiya dlya vodorodnoj energetiki [Palladium alloys for hydrogen energy], Rossijskij khimicheskij zhurnal [Russian Chemical Journal], 2006. vol. 50. no 4. pp. 36-41. (In Russian).
16. Ma Y.H., Akis B.C., Ayturk M.E. et al. Characterization of intermetallic diffusion barrier and alloy formation for Pd/Cu and Pd/Ag porous stainless steel composite membranes, Industrial & Engineering Chemistry Research, 2004, vol. 43, issue 12, pp. 2936-2945. DOI: 10.1021/ie034002e.
17. Yun S., Oyama S.T. Correlations in palladium membranes for hydrogen separation: A review, Journal of Membrane Science, 2011, vol. 375, issue 1-2, pp. 28-45. DOI: 10.1016/j.memsci.2011.03.057.
18. Peters T.A., Kaleta T., Stange M., Bredesen R. Hydrogen transport through a selection of thin Pd-alloy membranes: Membrane stability, H2S inhibition, and flux recovery in hydrogen and simulated WGS mixtures, Catalysis Today, 2012, vol. 193, issue 1, pp. 8-19. DOI: 10.1016/j.cattod.2011.12.028.
19. Gade S.K., DeVoss S.J., Coulter K.E. et al. Palladium–gold membranes in mixed gas streams with hydrogen sulfide: Effect of alloy content and fabrication technique, Journal of Membrane Science, 2011, vol. 378, issue 1-2, pp. 35-41. DOI: 10.1016/j.memsci.2010.11.044.
20. Acha E., van Delft Y.C., Cambra J.F., Arias P.L. Thin PdCu membrane for hydrogen purification from in-situ produced methane reforming complex mixtures containing H2S, Chemical Engineering Science, 2018, vol. 176, pp. 429-438. DOI: 10.1016/j.ces.2017.11.019.
21. Fontana A.D., Sirini N., Cornaglia L.M., Tarditi A.M. Hydrogen permeation and surface properties of PdAu and PdAgAu membranes in the presence of CO, CO2 and H2S, Journal of Membrane Science, 2018, vol. 563, pp. 351-359. DOI: 10.1016/j.memsci.2018.06.001.
22. Howard B.H., Killmeyer R.P., Rothenberger K.S. et al. Hydrogen permeance of palladium–copper alloy membranes over a wide range of temperatures and pressures, Journal of Membrane Science, 2004, vol. 241, issue 2, pp. 207-218. DOI: 10.1016/j.memsci.2004.04.031.
23. Lee S.M., Xu N., Kim S.S. et al. Palladium/ruthenium composite membrane for hydrogen separation from the off-gas of solar cell production via chemical vapor deposition, Journal of Membrane Science, 2017, vol. 541, pp. 1-8. DOI: 10.1016/j.memsci.2017.06.093.
24. Liu J., Bellini S., de Nooijer N.C.A. et al. Hydrogen permeation and stability in ultra-thin PdRu supported membranes, International Journal of Hydrogen Energy, 2020, vol. 45, issue 12, pp. 7455-7467. DOI: 10.1016/j.ijhydene.2019.03.212.
25. Omidifar M., Babaluo A.A., Jamshidi S. H2 permeance and surface characterization of a thin (2 μm) Pd-Ni composite membrane prepared by electroless plating, Chemical Engineering Science, 2024, vol. 283, art. no. 119370, 14 p. DOI: 10.1016/j.ces.2023.119370.
26. Bosko M.L., Fontana A.D., Tarditi A., Cornaglia L. Advances in hydrogen selective membranes based on palladium ternary alloys, International Journal of Hydrogen Energy, 2021, vol. 46, issue 29, pp. 15572-15594. DOI: 10.1016/j.ijhydene.2021.02.082.
27. Kim D.-W., Park Y.J., Woo B.-I., Kang S.-M., Park J.-S. Study on the perm-selectivity of thin Pd–Cu–Ni ternary alloy membrane for hydrogen purification and separation, Japanese Journal of Applied Physics, 2010, vol. 49, no. 1R, pp. 018003-1-018003-3. DOI: 10.1143/JJAP.49.018003.
28. Nayebossadri S., Speight J.D., Book D. A novel Pd–Cu–Zr hydrogen separation membrane with a high tolerance to sulphur poisoning, Chemical Communications, 2015, vol. 51, issue 87, pp. 15842-15845. DOI: 10.1039/C5CC04327A.
29. Conde J.J., Maroño M., Sánchez-Hervás J.M. Pd-based membranes for hydrogen separation: review of alloying elements and their influence on membrane properties, Separation & Purification Reviews, 2017, vol. 46, issue 2, pp. 152-177. DOI: 10.1080/15422119.2016.1212379.
30. Nooijer N., Sanchez J. D., Melendez J. et al. Influence of H2S on the hydrogen flux of thin-film PdAgAu membranes, International Journal of Hydrogen Energy, 2020, vol. 45, issue 12, pp. 7303-7312. DOI: 10.1016/j.ijhydene.2019.06.194.
31. Nayebossadri S., Speight J., Book D. Effects of low Ag additions on the hydrogen permeability of Pd–Cu–Ag hydrogen separation membranes, Journal of Membrane Science, 2014, vol. 451, pp. 216-225. DOI: 10.1016/j.memsci.2013.10.002.
32. Escalante Y., Tarditi A.M. Thermally stable membranes based on PdNiAu systems with high nickel content for hydrogen separation, Journal of Membrane Science, 2023, vol. 676, art. no. 121581, 11 p. DOI: 10.1016/j.memsci.2023.121581.
33. Chen Z., Yang Z., Tong Y., Yin Z., Li S. High hydrogen permeability of Pd-Ru-In membranes prepared by electroless co-deposition, Separation and Purification Technology, 2024, vol. 343, art. no. 127073, 10 p. DOI: 10.1016/j.seppur.2024.127073.
34. Doyle M.L., Harris I.R. Palladium-rare earth alloys. Their order-disorder transformations and behaviour with hydrogen, Platinum Metals Review, 1988, vol. 32, issue 3, pp. 130-140. DOI: 10.1595/003214088X323130140.
35. Hughes D.T., Harris I.R. Hydrogen diffusion membranes based on some palladium-rare earth solid solution alloys, Zeitschrift für Physikalische Chemie Neue Folge, 1979, vol. 117, issue 117, pp. 185-193. DOI: 10.1524/zpch.1979.117.117.185.
36. Sakamoto Y., Chen F.L., Furnkawa M., Noguchi M. Permeability and diffusivity of hydrogen in palladium-rich Pd-Y(Gd)-Ag ternary alloys, Journal of Alloys and Compounds, 1992, vol. 185, issue 2, pp. 191-205. DOI: 10.1016/0925-8388(92)90468-O.
37. Kang S.G., Coulter K.E., Gade S.K., Way J.D., Sholl D.S. Identifying metal alloys with high hydrogen permeability using high throughput theory and experimental testing, The Journal of Physical Chemistry Letters, 2011, vol. 2, issue 24, pp. 3040-3044. DOI: 10.1021/jz201393t.
38. Burkhanov G.S., Gorina N.B., Kolchugina N.B. et al. Palladium-based alloy membranes for separation of high purity hydrogen from hydrogen-containing gas mixtures, Platinum Metals Review, 2011, vol. 55, issue 1, pp. 3-12. DOI: 10.1595/147106711X540346.
39. Al-Shammary A.F.Y., Caga I.T., Winterbottom J.M., Tata A.Y., Harris I.R. Palladium-based diffusion membranes as catalysts in ethylene hydrogenation, Journal of Chemical Technology & Biotechnology, 1991, vol. 52, issue 4, pp. 571-585. DOI: 10.1002/jctb.280520414.
40. Kol’chugina N.B., Gorbunov S.V., Roshan N.R. et al. Membrane Pd–7.70 Wt % Lu alloy for the preparation and purification of hydrogen, Physics of Metals and Metallography, 2021, vol. 122, issue 1, pp. 54-59. DOI: 10.1134/S0031918X21010075.
41. Roses L., Manzolini G., Campanari S., Wit E.D., Walter M. Techno-economic assessment of membrane reactor technologies for pure hydrogen production for fuel cell vehicle fleets, Energy & Fuels, 2013, vol. 27, issue 8, pp. 4423-4431, DOI: 10.1021/ef301960e.
42. Shi F., Wang X. Microscopic structure, hydrogen permeability and hydrogen embrittlement resistance of Nb-Hf-Ni eutectic alloy, International Journal of Hydrogen Energy, 2021, vol. 46, issue 1, pp. 1330-1333. DOI: 10.1016/j.ijhydene.2020.05.007.
43. Phair J.W., Donelson R. Developments and design of novel (non-palladium-based) metal membranes for hydrogen separation, Industrial & Engineering Chemistry Research, 2006, vol. 45, issue 16, pp. 5657-5674. DOI: 10.1021/ie051333d.
44. Dolan M.D. Non-Pd BCC alloy membranes for industrial hydrogen separation, Journal of Membrane Science, 2010, vol. 362, issue 1-2, pp. 12-28. DOI: 10.1016/j.memsci.2010.06.068.
45. Rothenberger K.S., Howard B.H., Killmeyer R.P. et al. Evaluation of tantalum-based materials for hydrogen separation at elevated temperatures and pressures, Journal of Membrane Science, 2003, vol. 218, issue 1-2, pp. 19-37. DOI: 10.1016/S0376-7388(03)00134-0.
46. Belyakova R.M., Kurbanova E.D., Sidorov N.I., Polukhin V.A. Membrany na osnove Nb–Ni i V–Ni dlya polucheniya sverkhchistogo vodoroda [Membranes based on Nb–Ni and V–Ni for production of super-pure hydrogen], Rasplavy [Melts], 2022, no. 2, pp. 124-140. DOI: 10.31857/S0235010622020025. (In Russian).
47. Ishikawa K., Tokui S., Aoki K. Hydrogen permeation in anisotropic Nb–TiNi two-phase alloys formed by forging and rolling, International Journal of Hydrogen Energy, 2017, vol. 42, issue 16, pp. 11411-11421. DOI: 10.1016/j.ijhydene.2017.03.127.
48. Yan E., Huang H., Min R. et al. Design and characterizations of novel Nb-ZrCo hydrogen permeation alloys for hydrogen separation applications, Materials Chemistry and Physics, 2018, vol. 212, pp. 282-291. DOI: 10.1016/j.matchemphys.2018.03.059.
49. Huang F., Li X., Shan X. et al. Hydrogen transport through the V-Cr-Al alloys: Hydrogen solution, permeation and thermal-stability, Separation and Purification Technology, 2020, vol. 240, art. no. 116654, 9 p. DOI: 10.1016/j.seppur.2020.116654.
50. Zhang Y., Ozaki T., Komaki M., Nishimura C. Hydrogen permeation characteristics of vanadium–aluminium alloys, Scripta Materialia, 2002, vol. 47, issue 9, pp. 601-606. DOI: 10.1016/S1359-6462(02)00218-X.
51. Santucci A., Tosti S., Basile A. 4 - Alternatives to palladium in membranes for hydrogen separation: nickel, niobium and vanadium alloys, ceramic supports for metal alloys and porous glass membranes, Handbook of Membrane Reactors Fundamental Materials Science, Design and Optimisation, ed. by A. Basile, Woodhead Publishing Series in Energy, vol. 1. Oxford, Woodhead Publishing, 2013, pp. 183-217. DOI: 10.1533/9780857097330.1.183.
52. Yan X.F., Wang Z., Wang F. et al. Effects of doping with a third element (Pd, Ru, Ta) on the structure and hydrogen permeation properties of V–10Mo solid solutions, International Journal of Hydrogen Energy, 2020, vol. 45, issue 7, pp. 4635-4643. DOI: 10.1016/j.ijhydene.2019.12.026.
53. Alimov V.N., Busnyuk A.O., Kuzenov S.R., Peredistov E.U., Livshits A.I. Bcc V–Fe alloys for the hydrogen separation membranes: Hydrogen solubility and global character of alloying effect, Journal of Membrane Science, 2022, vol. 644, art. no. 120159, 8 p. DOI: 10.1016/j.memsci.2021.120159.
54. Handbook of ternary alloy phase diagrams (10 volume set), ed. by P. Villars, Prince, H. Okamoto. Materials Park, Ohio, ASM International, 1995, 15000 p.
55. Binary alloy phase diagrams (3 volume set), ed. by T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak. Materials Park, Ohio, ASM International, 1990, XXII+3589 pp.
56. Komiya K., Ito S., Yukawa H. et al. Alloying effects on the hydriding properties of niobium, Metal Materials Transactions, 2003, vol. 44, issue 9, pp. 1686-1689. DOI: 10.2320/matertrans.44.1686.
57. Yukawa H., Yamashita D., Ito S. et al. Alloying effects on the phase stability of hydrides formed in vanadium alloys, Materials Transactions, 2002, vol. 43, issue 11, pp. 2757-2762 DOI: 10.2320/matertrans.43.2757.
58. Santos D.S., Miranda P.E.V. The use of electrochemical hydrogen permeation techniques to detect hydride phase separation in amorphous metallic alloys, Journal of Non-Crystalline Solids, 1998, vol. 232-234, pp. 133-139. DOI: 10.1016/S0022-3093(98)00487-6.
59. Suzuki A., Yukawa H., Ijiri S. et al. Alloying Effects on Hydrogen Solubility and Hydrogen Permeability for V-Based Alloy Membranes, Materials Transactions, 2015, vol. 56, issue 10, pp. 1688-1692. DOI: 10.2320/matertrans.MAW201511.
60. Matsumoto Y., Yukawa H., Nambu T. Determination of ductile-to-brittle transition hydrogen concentrations (DBTC) for group 5 hydrogen permeable membranes using in-situ small punch test, Journal of the Japan Institute of Metals and Materials, 2013, vol. 77, issue 12, pp. 585-592, DOI: 10.2320/jinstmet.JC201313.
61. Suzuki A., Yukawa H. Quantitative evaluations of hydrogen diffusivity in V-X (X = Cr, Al, Pd) Alloy membranes based on hydrogen chemical potential, Membranes, 2021, vol. 11, issue 11, art. no. 67, 20 p. DOI: 10.3390/membranes11010067.
62. Suzuki A., Yukawa H., A review for consistent analysis of hydrogen permeability through dense metallic membranes, Membranes, 2020, vol. 10, issue 6, art. no. 120, 20 p. DOI: 10.3390/membranes10060120.
63. Suzuki A., Yukawa H., Nambu T. et al. Analysis of hydrogen mobility in Nb-based alloy membranes in view of new description of hydrogen permeability based on hydrogen chemical potential, Journal of Alloys and Compounds, 2015, vol. 645, supplement 1, pp. S107-S111. DOI: 10.1016/j.jallcom.2014.12.265.
64. Kashkarov E.B., Svyatkin L.A., Gusev K.S. et al. Effect of high and low Nb content in multicomponent Nb–Ni–Ti–Zr–Co alloy on its structure, hardness and hydrogen permeability, Intermetallics, 2024, vol. 166, art. no. 108180, 9 p. DOI: 10.1016/j.intermet.2023.108180.
65. Cheng C.-Y., Yang Y.-C., Zhong Y.-Z. et al. Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys, Current Opinion in Solid State and Materials Science, 2017, vol. 21, issue 6, pp. 299-311. DOI: 10.1016/j.cossms.2017.09.002.
66. Kashkarov E., Krotkevich D., Koptsev M. et al. Microstructure and hydrogen permeability of Nb-Ni-Ti-Zr-Co high entropy alloys, Membranes, 2022, vol. 12, issue 11, art. no. 1157, 9 p. DOI: 10.3390/membranes12111157.
67 Tang H.X., Ishikawa K., Aoki K., Effect of elements addition on hydrogen permeability and ductility of Nb40Ti18Zr12Ni30 alloy, Journal of Alloys and Compounds, 2008, vol. 461, issue 1-2, pp. 263-266. DOI: 10.1016/j.jallcom.2007.06.116.
68. Yan E., Ge X., Guo Z. et al. Microstructure, hydrogen permeability and ductile-to-brittle transition-hydrogen concentration of (V, Nb)-Ti-Co quaternary alloys, Materials Chemistry and Physics, 2023, vol. 305, art. no 127919, 12 p. DOI: 10.1016/j.matchemphys.2023.127919.
69. Yamaura S., Inoue A., Effect of surface coating element on hydrogen permeability of melt-spun Ni40Nb20Ta5Zr30Co5 amorphous alloy, Journal of Membrane Science, 2010, vol. 349, issue 1-2, pp. 138-144. DOI: 10.1016/j.memsci.2009.11.037.
70. Dolan M.D., Hara S., Dave N.C. et al. Thermal stability, glass-forming ability and hydrogen permeability of amorphous Ni64Zr36−XMX (M=Ti, Nb, Mo, Hf, Ta or W) membranes, Separation and Purification Technology, 2009, vol. 65, issue 3, pp. 298-304. DOI: 10.1016/j.seppur.2008.10.051.
71. Paglieri S.N., Pal N.K., Dolan M.D. et al. Hydrogen permeability, thermal stability and hydrogen embrittlement of Ni–Nb–Zr and Ni–Nb–Ta–Zr amorphous alloy membranes, Journal of Membrane Science, 2011, vol. 378, issue 1-2, pp. 42-50. DOI: 10.1016/j.memsci.2011.04.049.
72. Sidorov N.I., Estemirova S.K., Kurbanova E.D., Polukhin V.A. Hydrogen kinetics in membrane alloys based on Fe–Ni, Nb–Ni, and V–Ni, Russian Metallurgy (Metally), 2022, vol. 2022, issue 8, pp. 887-897. DOI: 10.1134/S0036029522080158.
73. Nayebossadri S., Greenwood C.J., Speight J.D., Book D., Thermal and structural stability of Zr–based amorphous thin films for potential application in hydrogen purification, Separation and Purification Technology, 2017, vol. 187, pp. 173-183. DOI: 10.1016/j.seppur.2017.06.052.
74. Shimpo Y., Yamaura S.-I., Nishida M. et al. Development of melt-spun Ni–Nb–Zr–Co amorphous alloy for high-performance hydrogen separating membrane, Journal of Membrane Science, 2006, vol. 286, issue 1-2, pp. 170-173. DOI: 10.1016/j.memsci.2006.09.031.
75. Yamaura S.-I., Nakata S., Kimura H., Inoue A. Hydrogen permeation of the Zr65Al7.5Ni10Cu12.5Pd5 alloy in three different microstructures, Journal of Membrane Science, 2007, vol. 291, issue 1-2, pp. 126-130. DOI: 10.1016/j.memsci.2006.12.049.
76. Paolone A., Chandra D. 9 - Amorphous metal membranes, Current Trends and Future Developments on (Bio-) Membranes, Recent Advances in Metallic Membranes, ed. by A. Basile, F. Gallucci. Amsterdam, Elsevier, 2020, pp. 209-233. DOI: 10.1016/B978-0-12-818332-8.00009-0.
77. Smirnov L.I., Goltsov V.A. Diffuziya i diffuzionnye yavleniya v vodorodnoj podsisteme splavov metall-vodorod [Diffusion and diffusive phenomena in hydrogen subsystems of metal-hydrogen alloys], Mezhdunarodnyj nauchnyj zhurnal «Al'ternativnaya energetika» [International Scientific Journal for Alternative Energy and Ecology], 2014, no. 1 (141), pp. 111-137. (In Russian).
78. Prizhimov A.S.1, Boldyreva A.V. Molekulyarno-dinamicheskoe modelirovanie diffuzii vodoroda v bikristalle palladiya, soderzhashchem malouglovuyu granitsu zeren [Molecular dynamics simulation of hydrogen diffusion in palladium bicrystal, containing a low angle grain boundary], [Kondensirovannye sredy i mezhfaznye granitsy, Condensed Matter and Interphases], 2016, vol. 18, no. 3, pp. 402-407. (In Russian).
79. McLennan K. G., Gray E.M., Dobson J. F. Deuterium occupation of tetrahedral sites in palladium, Physical Review B, 2008, vol. 78, issue 1, pp. 014104-1-014104-9. DOI: 10.1103/PhysRevB.78.014104.
80. Gissler W., Rother H. Theory of the quasielastic neutron scattering by hydrogen in bcc metals applying a random flight method, Physica, 1970, vol. 50, issue 3, pp. 380-390. DOI: 10.1016/0031-8914(70)90258-2.
81. Kirchheim R., Mütschele T., Kieninger W. et al. Hydrogen in amorphous and nanocrystalline, Materials Science and Engineering, 1988, vol. 99, issue 1-2, pp. 457-462. DOI: 10.1016/0025-5416(88)90377-1.
82. Larikov L.N. Diffuziya v amorfnykh metallicheskikh splavakh I [Diffusion in amorphous metal alloys I], Metallofizika [Metallophysics], 1993, vol. 15, no. 4, pp. 54-78. (In Russian).
83. Andrievski R.A., Glezer A.M. Size effects in properties of nanomaterials, Scripta Materialia. 2001, vol. 44, issue 8-9, pp. 1621-1624. DOI: 10.1016/S1359-6462(01)00786-2.
84. Gapontsev A.V., Kondrat'ev V.V. Hydrogen diffusion in disordered metals and alloys, Physics-Uspekhi, 2003, vol. 46, no. 10, pp. 1077-1098. DOI: 10.1070/pu2003v046n10abeh001660.
85. Polukhin V.A., Sidorov N.I., Kurbanova E.D., Belyakova R.M. Comparative analysis of the characteristics of amorphous, nanocrystalline, and crystalline membrane alloys. Russian Metallurgy (Metally), 2022, vol. 2022, issue 8, pp. 797-817. DOI: 10.1134/S0036029522080110.