Internal friction at grain boundaries in nanocrystalline material with pores
V.G. Kul’kov, V.V. Kul’kova
Branch of the National Research University «Moscow Power Engineering Institute» in Volzhsky
DOI: 10.26456/pcascnn/2024.16.670
Original article
Abstract: A mathematical model of the internal friction in a polycrystalline material with the nanoscale grain size is considered. Their boundaries contain pores, both in the triple joints of the grains and between them. Under the influence of the alternating normal boundary stresses, flat sections of the boundary are periodically active sources and sinks for vacancies. Due to the presence of these flows, the mutual displacement of adjacent grains is carried out. Depending on temperature, the diffusion length of the vacancies is smaller or compared with the distance between the pores. In the graph of the dependence of the internal friction on temperature, there is a break between the rectilinear sections. From the position of the fracture, the average size of the flat sections of the border can be estimated. The effective activation energy of the process in these cases depends on temperature and differs twice. At temperatures when the concentration of thermal vacancies in the boundary exceeds the geometrically necessary value of the concentration of structural vacancies, the activation energy increases even more. The transition temperature to this value is determined by the degree of imbalance of the boundary structure.
Keywords: nanocrystalline material, grain boundaries, diffusion length, pores, vacancies, internal friction, activation energy
- Viktor G. Kul’kov – Dr. Sc., Professor, Branch of the National Research University «Moscow Power Engineering Institute» in Volzhsky
- Valentina V. Kul’kova – Ph. D., Associate Professor, Branch of the National Research University «Moscow Power Engineering Institute» in Volzhsky
Reference:
Kul’kov, V.G. Internal friction at grain boundaries in nanocrystalline material with pores / V.G. Kul’kov, V.V. Kul’kova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 670-678. DOI: 10.26456/pcascnn/2024.16.670. (In Russian).
Full article (in Russian): download PDF file
References:
1. Gusev A.I. Nanomaterialy, nanostruktury, nanotekhnologii [Nanomaterials, nanostructures, nanotechnologies], Moscow, Fizmatlit Publ., 2005, 416 p. (In Russian).
2. Matsui I., Kanetake M., Mori H., Takigawa Y., Higashi K. Relationship between grain boundary relaxation strengthening and orientation in electrodeposited bulk nanocrystalline Ni alloys, Materials Letters, 2017, vol. 205, pp. 211-214. DOI: 10.1016/j.matlet.2017.06.094.
3. Varshney P., Chhangani S., Prasad M.J.N.V., Pati S., Gollapudi S. Effect of grain boundary relaxation on the corrosion behaviour of nanocrystalline Ni-P alloy, Journal of Alloys and Compounds, 2020, vol. 830, art. no. 154616, 9 p. DOI: 10.1016/j.jallcom.2020.154616.
4. Mulyukov R.R., Imaev R.M., Nazarov A.A. et al. Sverkhplastichnost' ul'tramelkozernistykh splavov: Eksperiment, teoriya, tekhnologii [Superplasticity of ultrafine-grained alloys: Experiment, theory, technology], Moscow, Nauka Publ., 2014, 284 p. (In Russian).
5. Nazarov A.A., Romanov A.E., Valiev R.Z. On the structure, stress fields and energy of nonequilibrium grain boundaries, Acta Metallurgica et Materialia, 1993, vol. 41, issue 4, pp. 1033-1040. DOI: 10.1016/0956-7151(93)90152-I.
6. Chuvil'deev V.N. Neravnovesnye granitsy zeren v metallakh. Teoriya i prilozheniya [Nonequilibrium grain boundaries in metals. Theory and Applications], Moscow, Fizmatlit Publ., 2004, 304 p. (In Russian)
7. Shabashov V.A., Ovchinnikov V.V., Mulyukov R.R., Valiev R.Z., Filippova N.P. Deformation-induced nonequilibrium grain-boundary phase in submicrocrystalline iron, Nanostructured Materials, 1999, vol. 11, issue 8, pp. 1017-1029. DOI: 10.1016/S0965-9773(99)00383-9.
8. Andrievski R.A., Glezer A.M. Strength of nanostructures, Physics-Uspekhi, 2009, vol. 52, issue 4, pp. 315- 334. DOI: 10.3367/UFNe.0179.200904a.0337.
9. Chai Z.., Yu Z., Chen X. The kinetics of nanostructural relaxation in electrodeposited Ni upon low-temperature annealing: an in-situ X-ray diffraction investigation, Journal of Materials Research and Technology, 2022, vol. 18, pp. 4099-4103. DOI: 10.1016/j.jmrt.2022.04.098.
10. Betekhtin V.I., Tabachnikova E.D., Kadomtsev A.G., Narykova M.V., Lapovok R. Effect of counterpressure during equal-channel angular pressing on nanoporosity formation in ultrafine-grained copper, Technical Physics Letters, 2011, vol. 37, issue 8, pp. 767-768. DOI: 10.1134/S1063785011080189.
11. Betekhtin V.I., Kadomtsev A.G., Sklenicka V., Saxl I. Nanoporosity of fine-crystalline aluminum and an aluminum-based alloy, Physics of the Solid State, 2007, vol. 49, issue 10, pp. 1874-1877. DOI: 10.1134/S1063783407100101.
12. Hartland P., Crocker A.G., Tucker M.O. Grain growth with boundary pores, Journal of Nuclear Materials, 1988, vol. 152, issue 2-3, pp. 310-322. DOI: 10.1016/0022-3115(88)90342-X.
13. Blanter M.S., Golovin I.S., Neuhauser H. Sinning H.-R. Internal friction in metallic materials. A handbook, Springer Series in Materials Science, vol. 90. Berlin, Heidelberg, Springer-Verlag, 2007, XVII, 542 p. DOI: 10.1007/978-3-540-68758-0.
14. Deshevyh V.V., Kul'kov V.G., Korotkov L.N., Tarasov D.P. Vysokotemperaturnyj fon vnutrennego treniya v nanokompozitsionnom materiale [High-temperature internal friction background in nanocomposite material], Kompozity i nanostruktury [Composites and Nanostructures], 2012, no. 2, pp. 24-34. (In Russian).
15. Alfreider M., Issa I., Renk O., Kiener D. Probing defect relaxation in ultra-fine grained Ta using micromechanical spectroscopy, Acta Materialia, 2020, vol. 185, pp. 309-319 DOI: 10.1016/j.actamat.2019.12.011.
16. Kul’kov V.G., Kul’kova V.V. Zernogranichnoe vnutrennee trenie v poristom ul'tramelkozernistom materiale [The grain boundary internal friction in a porous ultra-fine grained material], Al'ternativnaya energetika i ekologiya [Alternative Energy and Ecology (ISJAEE)], 2015, vol. 17-18, pp. 100-104. DOI: 10.15518/isjaee.2015.17-18.014. (In Russian).
17. Kul’kov, V.G., Syshchikov, A.A. Internal friction at the grain boundaries with elongated pores, Technical Physics Letters, 2019, vol. 45, issue 2, pp. 82-84. DOI: 10.1134/S106378501902010X.
18. Nowick A.S., Berry B.S. Anelastic relaxation in crystalline solids, New York, London, Academic Press Publ., 1972, 677 p. DOI: 10.1016/B978-0-12-522650-9.X5001-0.
19. Zolotukhin, I.V., Kalinin, Yu.E. O vysokotemperaturnom fone vnutrennego treniya v kristallicheskikh i amorfnykh tverdykh telakh [On the high-temperature background of internal friction in crystalline and amorphous solids], Fizika tverdogo tela [Physics of the Solid State], 1995, vol. 37, issue 2, pp. 536-545. (In Russian).
20. Kalinin Yu.E., Darinskii B.M. High-temperature background of internal friction in alloys, Metal Science and Heat Treatment, 2012, vol. 54, issue 5-6, pp. 221-223. DOI: 10.1007/s11041-012-9485-4.
21. Gridnev S.A., Kalinin Y.E. On the vacancy nature of the high-temperature background of internal friction in solids, Technical Physics, 2022, vol. 92, issue 2, pp. 196-202. DOI: 10.21883/TP.2022.02.52947.146-21.