Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Electrostimulated plasticity of titanium under tension

O.E. Korolkov, A.A. Misochenko, V.V. Stolyarov

Mechanical Engineering Research Institute of RAS

DOI: 10.26456/pcascnn/2024.16.658

Original article

Abstract: The paper confirms the possibility of electrical stimulation of plasticity, previously discovered in ultrafine-grained titanium. The regimes of pulsed current during tension have been experimentally determined, which make it possible to significantly increase the elongation to failure in commercially pure coarse-grained titanium Grade 4. It is shown that the introduction of single current pulses with an amplitude density of 300-400 A/mm2 with a variable duration from 100 to 1000 μs and a duty cycle from 1000 to 10000 during tension helps to reduce the ultimate tensile strength from 845 to 750 MPa and simultaneously increase the elongation from 10 to 21%. Structural studies using optical microscopy have shown that tension accompanied current does not affect the average grain size, but leads to reducing large particles and a partial dissolution of small inclusions. The results of structural studies, temperature measurements and features of deformation behavior when the current is turned off confirm the predominantly athermal nature of the increase in plasticity.

Keywords: electroplastic effect, tension, pulsed current, titanium, deformation behavior, plasticity, microstructure, stress relaxation

  • Oleg E. Korolkov – Researcher, Mechanical Engineering Research Institute of RAS
  • Anna A. Misochenko – PhD, Senior Researcher, Mechanical Engineering Research Institute of RAS
  • Vladimir V. Stolyarov – Dr. Sc., Chief Researcher, Mechanical Engineering Research Institute of RAS

Reference:

Korolkov, O.E. Electrostimulated plasticity of titanium under tension / O.E. Korolkov, A.A. Misochenko, V.V. Stolyarov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 658-669. DOI: 10.26456/pcascnn/2024.16.658. (In Russian).

Full article (in Russian): download PDF file

References:

1. Illarionov A.G., Popov A.A. Tekhnologicheskie i ekspluatatsionnye svojstva titanovykh splavov [Technological and operational properties of titanium alloys], Ekaterinburg, Ural Federal University Publ., 2014, 137 p. (in Russian).
2. Stolyarov V., Misochenko A. A pulsed current application to the deformation processing of materials, Materials, 2023, vol. 16, issue 18, art. no. 6270, 20 p. DOI: 10.3390/ma16186270.
3. Wang R., Xu Z., Jiang Y. et al. Design high-performance AZ31 ultrathin strip through multi-pass electroplastic rolling without off-line annealing, Materials Science and Engineering: A, 2022, vol. 862, art. no.144510, 8 p. DOI: 10.1016/j.msea.2022.144510.
4. Ghiotti A., Bruschi S., Simonetto E. et al. Electroplastic effect on AA1050 aluminium alloy formability, CIRP Annals, 2018, vol. 67, issue 1, pp. 289-292. DOI: 10.1016/j.cirp.2018.04.054.
5. Korol’kov O.E., Stolyarov V.V. Study and application of an electric current for medical implants, Journal of Machinery Manufacture and Reliability, 2021, vol. 50, issue 6. pp. 554-561. DOI: 10.3103/S1052618821060121.
6. Korolkov O.E., Pakhomov M.A., Stolyarov VV. Elektroplasticheskij effekt v titanovykh splavakh pri ikh rastyazhenii [The electroplastic effect in titanium alloys under tension], Zavodskaya laboratoriya. Diagnostika materialov [Industrial laboratory. Diagnostics of materials], 2022, vol. 88, no. 10, pp. 73-82. DOI: 10.26896/1028-6861-2022-88-10-73-82 (In Russian).
7. Stolyarov V.V. Atypical hardening caused by current and plastic deformation, Journal of Machinery Manufacture and Reliability, 2024, vol. 53, issue 3, pp. 212-217. DOI: 10.1134/S1052618824700080.
8. Eipert I., Sivaswamy G., Bhattacharya R. et al. Improvement in ductility in commercially pure titanium alloys by stress relaxation at room temperature, Key Engineering Materials, 2014, vol. 611-612, pp. 92-98. DOI: 10.4028/www.scientific.net/kem.611-612.92.
9. Korolkov O.E., Stolyarov V.V. Relaksatsiya napryazhenij pri rastyazhenii, soprovozhdaemom tokom v ul'tramelkozernistom titane [Stress relaxation under tension by accompanyed current in ultrafine-grain titanium], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 135-147. DOI: 10.26456/pcascnn/2023.15.135. (In Russian).
10. Herbst S., Karsten E., Gerstein G. et al. Electroplasticity mechanisms in hcp materials, Advanced Engineering Materials, 2023, vol. 25, art. no. 2201912, 12 p. DOI: 10.1002/adem.202201912.
11. Tang Y., Ju Y., Gu S. et al. Microstructural modification and mechanical improvement of ultrafine-grained Ti alloy through electron wind force: An innovative approach, Materials Science and Engineering: A, 2024, vol. 891, art. no. 145845, 10 p. DOI: 10.1016/j.msea.2023.145845.
12. Sheng Y., Hua Y., Wang X. et al. Application of high-density electropulsing to improve the performance of metallic materials: mechanisms, microstructure and properties, Materials, 2018. vol. 11, issue 2, art. no. 185, 25 p. DOI: 10.3390/ma11020185.
13. Jiang B., Yang W., Zhang Z. et al. Numerical simulation and experiment of electrically-assisted incremental forming of thin TC4 titanium alloy sheet, Materials, 2020, vol. 13, issue 6, art. no. 1335, 8 p. DOI: 10.3390/ma13061335.
14. Ao D.-W., Chu X.-R., Lin S.-X. et al. Hot tensile behaviors and microstructure evolution of Ti-6Al-4V titanium alloy under, Acta Metallurgica Sinica (English Letters), 2018, vol. 31, issue 12, pp. 1287-1296. DOI: 10.1007/s40195-018-0735-3.
15. Rezyapova L.R., Valiev R.R., Sitdikov V.D., Valiev R.Z. Issledovanie vydelenij vtorykh faz v nanostrukturnom tekhnicheski chistom titane [Study of second phase precipitates in nanostructured commercially pure titanium], Pis'ma o materialakh [Letters on Materials], 2021, vol. 11, no. 3, pp. 345-350. DOI: 10.22226/2410-3535-2021-3-345-350. (In Russian).
16. Stolboushkina O.A., Konovalov S.V., Ivanov Yu.F., Gromov V.E. Osobennosti formirovaniya dislokatsionnoj substruktury pri polzuchesti alyuminiya v usloviyakh prilozhennogo potentsiala [Features of the formation of a dislocation substructure during creep of aluminum under conditions of an applied potential], Perspektivnye Materialy [Prospective materials], 2011, no 1. pp. 47-52. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒