Modelling of adaptive phase-shifting filter cells with optical control based on multilayer structures of phasechange materials
A.V. Kiselev, V.A. Mikhalevsky, A.A. Nevzorov, A.A. Burtsev, V.V. Ionin, N.N. Eliseev, A.A. Lotin
National Research Centre «Kurchatov Institute»
DOI: 10.26456/pcascnn/2024.16.651
Short communication
Abstract: The paper presents the results of modelling the phase shift of a passing optical beam caused by the formation of a layered structure in a controllable cell made of the phase-change material Ge2Sb2Te5 induced by the controlling influence of pulsed laser radiation of short and ultrashort duration. The crystallization of a thin film of Ge2Sb2Te5 is analyzed on the basis of the thermokinetic approach, taking into account the kinetic properties of the material, the energy and duration of the applied laser radiation, the amorphization of the upper layers of the film during rapid heating and the temperature dependence of the kinetic properties. Graphs of the thickness of the crystalline layer in the film material were plotted for each influencing pulsed radiation. From the data on the position of the crystalline layer, the phase shift of the transmitted optical radiation is calculated. Based on the modelling data of the investigated cell, a phase shifter can be constructed to transform an optical beam of arbitrary aperture. The proposed method of controlling the optical beam front by changing the structural state of a thin film can be very promising when accurate and fast tuning of the optical phase transparency is required.
Keywords: phase shift, optical filters, chalcogenides, phase change materials, thin films, crystallization
- Alexey V. Kiselev – Researcher, National Research Centre «Kurchatov Institute»
- Vladimir A. Mikhalevsky – Researcher, National Research Centre «Kurchatov Institute»
- Alexey A. Nevzorov – Ph. D., Researcher, National Research Centre «Kurchatov Institute»
- Anton A. Burtsev – Researcher, National Research Centre «Kurchatov Institute»
- Vitaly V. Ionin – Researcher, National Research Centre «Kurchatov Institute»
- Nikolay N. Eliseev – Junior Researcher, National Research Centre «Kurchatov Institute»
- Andrey A. Lotin – Ph. D., Deputy Head of the branch, National Research Centre «Kurchatov Institute»
Reference:
Kiselev, A.V. Modelling of adaptive phase-shifting filter cells with optical control based on multilayer structures of phasechange materials / A.V. Kiselev, V.A. Mikhalevsky, A.A. Nevzorov, A.A. Burtsev, V.V. Ionin, N.N. Eliseev, A.A. Lotin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 651-657. DOI: 10.26456/pcascnn/2024.16.651. (In Russian).
Full article (in Russian): download PDF file
References:
1. Phase change materials: science and applications, ed. by S. Raoux and M. Wutting. New York, Springer Science+Business Media, LLC, 2009, 450 p. DOI: 10.1007/978-0-387-84874-7.
2. Abdollahramezani S., Hemmatyar O., Taghinejad H. et al. Tunable nanophotonics enabled by chalcogenide phase-change materials, Nanophotonics, 2020, vol. 9, issue 5, pp. 1189-1241. DOI: 10.1515/nanoph-2020-0039.
3. Sarwat S.G. Materials science and engineering of phase change random access memory, Materials Science and Technology, 2017, vol. 33, issue 16, pp. 1890-1906. DOI: 10.1080/02670836.2017.1341723.
4. Wuttig M., Raoux S. The science and technology of phase change materials, Zeitschrift für anorganische und allgemeine Chemie, 2012, vol. 638, issue 15, pp. 2455-2465. DOI: 10.1002/zaac.201200448.
5. Lian C., Vagionas C., Alexoudi T. et al. Photonic (computational) memories: tunable nanophotonics for data storage and computing, Nanophotonics, 2022, vol. 11, issue 17, pp. 3823-3854. DOI: 10.1515/nanoph-2022-0089.
6. Zhang W., Mazzarello R., Wuttig M., Ma E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing, Nature Reviews Materials, 2019, vol. 4, issue 3, pp. 150-168. DOI: 10.1038/s41578-018-0076-x.
7. Kolobov A.V., Tominaga J. Chalcogenides: metastability and phase change phenomena. Berlin, Heidelberg, Springer-Verlag, 2012, XVI+284 p. DOI: 10.1007/978-3-642-28705-3.
8. Guo P., Sarangan A. M., Agha I. A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators, Applied Sciences, 2019, vol. 9, issue 3, art. no. 530, 26 p. DOI: 10.3390/app9030530.
9. Cao T., Cen M. Fundamentals and applications of chalcogenide phase‐change material photonics, Advanced Theory and Simulations, 2019, vol. 2, issue 8, art. no. 1900094, 17 p. DOI: 10.1002/adts.201900094.
10. Sreekanth K.V., ElKabbash M., Caligiuri V. et al. New directions in thin film nanophotonics, Singapore, Springer, 2019, X+172 p. DOI: 10.1007/978-981-13-8891-0.
11. Zhou G.F. Materials aspects in phase change optical recording, Materials Science and Engineering: A, 2001, vol. 304-306, pp. 73-80. DOI: 10.1016/S0921-5093(00)01448-9.
12. Weidenhof V., Friedrich I., Ziegler S., Wuttig M. Laser induced crystallization of amorphous Ge2Sb2Te5 films, Journal of Applied Physics, 2001, vol. 89, issue 6, pp. 3168-3176. DOI: 10.1063/1.1351868.
13. Yang I., Do K., Chang H.J. et al. Effect of doped nitrogen on the crystallization behaviors of Ge2Sb2Te5, Journal of The Electrochemical Society, 2010, vol. 157, no. 4, pp. H483-H486. DOI 10.1149/1.3321759.
14. Ashwin P., Patnaik B.S.V., Wright C.D. Fast simulation of phase-change processes in chalcogenide alloys using a Gillespie-type cellular automata approach, Journal of Applied Physics, 2008, vol. 104, issue 8, art. no 084901, 8 p. DOI: 10.1063/1.2978334.
15. Nevzorov A.A., Mikhalevsky V.A., Eliseev N.N., et al. Discrete thermokinetic computational model of laser-induced phase transitions in phase-changing materials, Applied Physics Letters, 2023, vol. 122, issue 19, art. no. 191106, 7 p. DOI: 10.1063/5.0147844
16. Orava J., Greer, A.L. Classical-nucleation-theory analysis of priming in chalcogenide phase-change memory, Acta Materialia, 2017, vol. 139, pp. 226-235. DOI: 10.1016/j.actamat.2017.08.013.
17. Abdelghfar A., Mousa M.A., Fouad B.M. et al. Electrostatically tuned optical filters based on hybrid plasmonic-dielectric thin films for hyperspectral imaging, Micromachines, 2021, vol. 12, issue 7, art. № 767, 14 p. DOI: 10.3390/mi12070767.