Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Methods for reducing droplet formation density on the surface of thin semiconductor films by pulse laser deposition: review

O.V. Devitsky1,2

1 Federal Research Center Southern Scientific Center of the RAS
2 North Caucasus Federal University

DOI: 10.26456/pcascnn/2024.16.631

Review

Abstract: The review discusses the most effective methods for reducing droplet density on the surface of thin films during pulsed laser deposition. This review highlights pulsed laser deposition as a promising technique for producing thin films from a wide range of materials. However, a significant challenge to its industrial application is the formation of droplets on the thin film surface. The primary causes of the droplet formation are identified, and a classification of methods to reduce the droplet density during pulsed laser deposition is provided. Completely eliminating droplets without compromising the quality or altering the stoichiometric composition of the thin films is exceedingly difficult, and no researchers have achieved this to date. The most effective strategy for reducing the droplet density involves optimizing the pulsed laser deposition parameters for specific material groups. Techniques such as using a segmented crystalline target, periodically rotating it at a specific speed, and employing excimer lasers at the energy densities slightly above the ablation threshold have been shown to reduce the droplet density on the thin film surface to as low as 103 cm-2. The physical and chemical processes occurring on the target surface have the greatest impact on the droplet formation. Among active methods, high-speed filtration is the most effective, capable of reducing droplet density to approximately 2 ⋅ 103 cm-2.

Keywords: pulsed laser deposition, thin films, droplet density, high-speed filtration, segmented target, dual-pulse laser deposition, laser energy density

  • Oleg V. Devitsky – Ph. D., Leading Researcher, Laboratory of Physics and Technology of Semiconductor Nanoheterostructures for Microwave Electronics and Photonics, Federal Research Center Southern Scientific Center of the RAS, Associate Professor, Department of Physical Chemistry North Caucasus Federal University

Reference:

Devitsky, O.V. Methods for reducing droplet formation density on the surface of thin semiconductor films by pulse laser deposition: review / O.V. Devitsky // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 631-642. DOI: 10.26456/pcascnn/2024.16.631. (In Russian).

Full article (in Russian): download PDF file

References:

1. Dikovska, A. Picosecond Pulsed Laser Deposition of Metals and Metal Oxides / A. Dikovska, G. Atanasova, T. Dilova et al. // Materials. – 2023. – V. 16. – I. 19. – Art. № 6364. – 14 p. DOI: 10.3390/ma16196364.
2. Pedarnig, J.D. Ultrashort and short-pulse laser ablation for chemical element analysis and thin film deposition of complex materials / J.D. Pedarnig, S. Keppert, N. Giannakaris et al. // Proceedings SPIE High-Power Laser Ablation VIII. – 2024. – V. 12939. – P. 1293907-1-1293907-5. DOI: 10.1117/12.3010133.
3. Mohammed, F.K. Characteristics of aluminium nitride thin film prepared by pulse laser deposition with varying laser pulses / F.K. Mohammed, A. Ramizy, N.M. Ahmed et al. // Optical Materials. – 2024. – V. 153. – Art. № 115622. – 8 p. DOI: 10.1016/j.optmat.2024.115622.
4. Khartsev, S. Electrical and optical properties of a Cu2O/β-Ga2O3 pn-junction / S. Khartsev, A. Sarakovskis, L. Grinberga et al. // Physica Status Solidi (а). – 2024. – V. 221. – I. 10. – Art. № 2300958. – 7 p. DOI: 10.1002/pssa.202300958.
5. Salaün, M. Growth and characterization of rubidium titanyl phosphate thin films by pulsed laser deposition / M. Salaün, A. Thiam, S. Kodjikian et al. // Materialia. – 2024. – V. 34. – Art. № 102068. – 8 p. DOI: 10.1016/j.mtla.2024.102068.
6. Pashchenko, A.S. Epitaxial growth of GaInAsBi thin films on Si (001) substrate using pulsed laser deposition / A.S. Pashchenko, O.V. Devitsky, M.L. Lunina et al. // Vacuum. – 2024. – V. 227. – Art. № 113372. – 9 p. DOI: 10.1016/j.vacuum.2024.113372.
7. Девицкий, О.В. Исследование состава пленок GaAs1-yBiy, полученных методом импульсного лазерного напыления / О.В. Девицкий, А.А. Кравцов, И.А. Сысоев // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. –2021. – Вып. 13. - С. 96-105. DOI: 10.26456/pcascnn/2021.13.096.
8. Pashchenko, A.S. Growth of nanotextured thin films of GaInAsP and GaInAsSbBi solid solutions on GaP substrates by pulsed laser deposition / A.S. Pashchenko, O.V. Devitsky, L.S. Lunin et al. // Nanosystems: Physics, Chemistry, Mathematics. – 2023. – V. 14. – I. 5. – P. 601-605. DOI: 10.17586/2220-8054-2023-14-5-601-605.
9. Salih, E.Y. Fabrication of CdSe/Si nanostructure for self-powered visible light photodetector / E. Yahya Salih // Materials Letters. – 2024. – V. 371. – Art. № 136930. – 4 p. DOI: 10.1016/j.matlet.2024.136930. 10. Zhang, J.-Y. Unveiling the growth mechanism of FeSeTe films by pulsed laser deposition technique / J.-Y. Zhang, Y.-X. He, T. He et al. // Superconductor Science and Technology. – 2024. V. 37. – I. 5. – Art. № 055007. – 7. DOI: 10.1088/1361-6668/ad3c9b.
11. Wu, X. Effect of laser energy density on microstructure and critical current of YGBCO and HGBCO films fabricated by PLD / X. Wu // Physica C: Superconductivity and Its Applications. – 2024. – V. 623. – Art. № 1354547. – 8 p DOI: 10.1016/j.physc.2024.1354547.
12. Raman, T.S.A. Influence of oxygen pressure during deposition on the microwave dielectric tunability of Ba0.5Sr0.5TiO3 thin films in PLD process / T.S. Akhil Raman, B. Arun, C. Shivakumar et al. // Applied Surface Science. – 2024. – Art. № 160477. – 9 p. DOI: 10.1016/j.apsusc.2024.160477.
13. Park, J.M. Characterization of polycrystalline BiFeO3 films prepared by magnetic-field-assisted 90° off-axis pulsed laser deposition / J.M. Park, M. Okuyama // Japanese Journal of Applied Physics. – 2024. – V. 63 – I. 6. – Art. № 065502. – 7 p. DOI: 10.35848/1347-4065/ad4ccb.
14. Fischer, D. The effect of molecular weight and deposition temperature on the formation of poly(ethylene oxide) films using the femtosecond pulsed laser deposition / D. Fischer // Polymer Crystallization. – 2020. – V. 3. – I. 5. – Art. № e1015. – 15 p. DOI: 10.1002/pcr2.10153.
15. Lin, C.H. Control of self-organization of drop-casted Nafion film for improving proton conduction in a polymer-electrolyte-membrane fuel cell to raise its output power density / C.H. Lin, H.H. Chen, K.Y. Zhan et al. // International Journal of Hydrogen Energy. – 2023. – V. 48. – I. 68. – P. 26609-26618. DOI: 10.1016/j.ijhydene.2022.11.031.
16. Caricato, A.P. MAPLE and MALDI: Theory and experiments / A.P. Caricato // In book: Lasers in Materials Science. Springer Series in Materials Science. – 2014. – V. 191. – P. 295-323. DOI: 10.1007/978-3-319-02898-9_12.
17. Mustofa, S. Formation of droplets on thin film surface in pulsed laser deposition using metal targets / S. Mustofa, S. Tsuyuguchi, T. Araki et al. // Quarterly Journal of the Japan Welding Society. – 2003. – V. 21. – I. 3. – 338-343. DOI: 10.2207/qjjws.21.338.
18. Девицкий, О.В. Структура и состав тонких пленок GaAs1-x-yNxBiy, полученных методом импульсного лазерного напыления / О.В. Девицкий // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. – 2022. – Вып. 14. – С. 593-601. DOI: 10.26456/pcascnn/2022.14.593.
19. Chen, Y.S. Indium droplet formation in InGaN thin films with single and double heterojunctions prepared by MOCVD / Y.S. Chen, C.H. Liao, C.T. Kuo et al. // Nanoscale Research Letters. – 2014. – V. 9. – I. 1. – Art. № 334. – 12 p. DOI: 10.1186/1556-276X-9-334.
20. Lunin, L.S. Ion-beam deposition of thin AlN films on Al2O3 substrate / L.S. Lunin, O.V. Devitskii, I.A. Sysoev et al. // Technical Physics Letters. – 2019. – V. 45. – I. 12. – P. 1237-1240. DOI: 10.1134/S106378501912023X.
21. Ptak, A.J. Kinetically limited growth of GaAsBi by molecular-beam epitaxy / A.J. Ptak, R. France, D.A. Beaton et al. // Journal of Crystal Growth. – 2012. – V. 338. – I. 1. – P. 107-110. DOI: 10.1016/j.jcrysgro.2011.10.040.
22. Koski, K. Surface defects and arc generation in reactive magnetron sputtering of aluminium oxide thin films / K. Koski, J. Hölsä, P. Juliet // Surface and Coatings Technology. – 1999. – V. 115. – I. 2-3. – P. 163-171. DOI: 10.1016/S0257-8972(99)00172-3.
23. Yoshitake, T. Elimination of droplets using a vane velocity filter for pulsed laser ablation of FeSi2 / T. Yoshitake, G. Shiraishi, K. Nagayama // Applied Surface Science. – 2002. – V. 197-198. – P. 379-383. DOI: 10.1016/S0169-4332(02)00344-6.
24. Harris, S.B. Deep learning with plasma plume image sequences for anomaly detection and prediction of growth kinetics during pulsed laser deposition / S.B. Harris, C.M. Rouleau, K. Xiao et al. // npj Computational Materials. – 2024. – V. 10. – Art. №. 105. – 8 p. DOI: 10.1038/s41524-024-01275-w.
25. Неволин, В.Н. Особенности импульсного лазерного осаждения тонкопленочных покрытий с применением противокапельного экрана / В.Н. Неволин, В.Ю. Фоминский, А.Г. Гнедовец, Р.И. Романов // Журнал технической физики. – 2009. – Том. 11. – Вып. 11. - С. 120-127.
26. Lackner, J.M. Pulsed laser deposition: a new technique for deposition of amorphous SiOx thin films / J.M. Lackner, W. Waldhauser, R. Ebner et al. // Surface and Coatings Technology. – 2003. – V. 163-164. – P. 300-305. DOI: 10.1016/S0257-8972(02)00612-6.
27. György, E. Deposition of particulate-free thin films by two synchronised laser sources: Effects of ambient gas pressure and laser fluence / E. György, I.N. Mihailescu, M. Kompitsas et al. // Thin Solid Films. – 2004. – V. 446. – I. 2. – P. 178-183. DOI: 10.1016/j.tsf.2003.09.071.
28. Prentice, J.J. Particulate reduction in PLD-grown crystalline films via bi-directional target irradiation / J.J. Prentice, J.A. Grant-Jacob, S.V. Kurilchik et al. // Applied Physics A: Materials Science and Processing. – 2019. – V. 125. – I. 2. – Art. № 152. – 8 p. DOI: 10.1007/s00339-019-2456-5.
29. Yimam, D.T. Pulsed laser deposited stoichiometric GaSb films for optoelectronic and phase change memory applications / D.T. Yimam, H. Zhang, J. Momand, B.J. Kooi // Materials Science in Semiconductor Processing. – 2021. – V. 133. – Art. № 105965. – 9 p. DOI: 10.1016/j.mssp.2021.105965.
30. Grant-Jacob, J.A. Particulate reduction in ternary-compound film growth via pulsed laser deposition from segmented binary-targets / J.A. Grant-Jacob, J.J. Prentice, S.J. Beeche. // Materials Research Express. – V. 5. – № 3. – Art. № 036402. – 8 p. DOI: 10.1088/2053-1591/aab0ef.
31. Van de Riet, E. A new method for the reduction of droplet deposition onto laser deposited thin metal films / E. Van de Riet, U.K.P. Biermann, J. Dieleman // Thin Solid Films. – 1994. – V. 241. – I. 1-2. – P. 134-137. DOI: 10.1016/0040-6090(94)90413-8.
32. Szörényi, T. Number density and size distribution of droplets in KrF excimer laser deposited boron carbide films / T. Szörényi, R. Stuck, F. Antoni // Applied Surface Science. – 2005. – V. 247. – I. 1-4. – P. 45-50. DOI: 10.1016/j.apsusc.2005.01.092.
33. Pashchenko, A.S. Structure and morphology of GaInAsP solid solutions on GaAs substrates grown by pulsed laser deposition / A.S. Pashchenko, O.V. Devitsky, L.S. Lunin et al. // Thin Solid Films. – 2022. – V. 743. – Art. № 139064. – 8 p. DOI: 10.1016/J.TSF.2021.139064.

⇐ Prevoius journal article | Content | Next journal article ⇒