Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Pulsed laser deposition OF III-V semiconductor thin films: review

O.V. Devitsky1,2

1 Federal Research Center Southern Scientific Center of the Russian Academy of Sciences
2 North Caucasus Federal University

DOI: 10.26456/pcascnn/2024.16.621

Review

Abstract: This review highlights the latest advancements in pulsed laser deposition of III-V semiconductor thin films on various substrates. The pulsed laser deposition method is shown to be highly effective and distinct from other thin film deposition techniques due to its discrete nature. Epitaxial growth of III-V thin films is crucial for developing new optoelectronic devices. The review presents experimental data on how various pulsed laser deposition parameters affect the structural, optical, and electrical properties as well as the stoichiometry of binary and multicomponent III-V thin films. It is demonstrated that achieving the highest structural quality in III-V thin films requires using femtosecond and nanosecond lasers with wavelengths ranging from 248 nm to 532 nm, a pulse energy density of no more than 3 J/cm², and substrate temperatures between 300 and 400°C. Additionally, the target material should be monolithic and have the highest possible density.

Keywords: pulsed laser deposition, thin films, III-V compounds, substrate temperature, energy density, stoichiometry

  • Oleg V. Devitsky – Ph. D., Leading Researcher, Laboratory of Physics and Technology of Semiconductor Nanoheterostructures for Microwave Electronics and Photonics, Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Senior Researcher, Scientific and Educational Center for Photovoltaics and Nanotechnology North Caucasus Federal University

Reference:

Devitsky, O.V. Pulsed laser deposition OF III-V semiconductor thin films: review / O.V. Devitsky // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 621-630. DOI: 10.26456/pcascnn/2024.16.621. (In Russian).

Full article (in Russian): download PDF file

References:

1. Shepelin N.A., Tehrani Z.P., Ohannessian N. et al. A practical guide to pulsed laser deposition, Chemical Society Reviews, 2023, vol. 52. issue 7, pp. 2294-2321. DOI: 10.1039/d2cs00938b.
2. Conde Garrido J.M., Silveyra J.M. A review of typical PLD arrangements: Challenges, awareness, and solutions, Optics and Lasers in Engineering, 2023, vol. 168, art. no. 107677, 19 p. DOI: 10.1016/j.optlaseng.2023.107677.
3. Wang B., Bin Zhang Z., Zhong S.P. et al. Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology, Journal of Materials Chemistry C, 2020, vol. 8, issue 15, pp. 4988-5014 DOI: 10.1039/c9tc07098b.
4. Masood K.B., Kumar P., Malik M.A. et al. A comprehensive tutorial on the pulsed laser deposition technique and developments in the fabrication of low dimensional systems and nanostructures, Emergent Materials, 2021, vol. 4, issue 3, pp. 737-754. DOI: 10.1007/s42247-020-00155-5.
5. Ojeda-G-P, A., Döbeli, M., Lippert, T. Influence of plume properties on thin film composition in pulsed laser deposition, Advanced Materials Interfaces, 2018, vol. 5, issue 18, art. no. 1701062, 16 p. DOI: 10.1002/admi.201701062.
6. Wolfman J., Negulescu B., Ruyter A. et al. Interface combinatorial pulsed laser deposition to enhance heterostructures functional properties, Practical Applications of Laser Ablation, ed. by D. Yang. London, IntechOpen Limited, 2021, pp. 3-21. DOI: 10.5772/intechopen.94415.
7. Eason R.W., May-Smith T.C., Sloyan K.A. et al. Multi-beam pulsed laser deposition for advanced thin-film optical waveguides, Journal of Physics D: Applied Physics, 2014, vol. 47, no. 3, art. no 034007, 15 p. DOI: 10.1088/0022-3727/47/3/034007.
8. Stokker-Cheregi F., Matei A., Dinescu M. et al. Photoluminescence of Eu-doped LiYF4 thin films grown by pulsed laser deposition and matrix-assisted pulsed laser evaporation, Journal of Physics D: Applied Physics, 2014, vol. 47, no. 4, art. no. 045304, 6 p. DOI: 10.1088/0022-3727/47/4/045304.
9. Aggarwal V., Gautam S., Varshney U. et al. Fabrication of ultra-violet photodetector on laser MBE grown epitaxial GaN nanowalls on sapphire (11–20), Journal of Materials Research, 2023, vol. 38. issue 2, pp. 429-438. DOI: 10.1557/s43578-022-00828-3.
10. Devitsky O.V., Kravtsov A.A., Sysoev I.A. Issledovanie sostava plenok GaAs1-yBiy, poluchennykh metodom impul'snogo lazernogo napyleniya [Study of the composition of GaAs1-yBiy films obtained by pulsed laser deposition], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 96-105. DOI: 10.26456/pcascnn/2021.13.096. (In Russian).
11. Devitsky O.V. Struktura i sostav tonkikh plenok GaAs1-x-yNxBiy, poluchennykh metodom impul'snogo lazernogo napyleniya [Structure and composition of thin GaAs1-x-yNxBiy films produced by pulsed laser deposition], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 593-601. DOI: 10.26456/pcascnn/2022.14.593. (In Russian).
12. Devitsky O. V., Nikulin D.A., Sysoev I.A. Pulsed laser deposition of gallium nitride thin films on sapphire substrates, AIP Conference Proceedings, 2020, vol. 2313, pp. 030012-1-030012-5. DOI: 10.1063/5.0032227.
13. Rout S., Popovici N., Dalui S. et al. Phase growth control in low temperature PLD Co: TiO2 films by pressure, Current Applied Physics, 2013, vol. 13, issue 4, pp. 670-676. DOI: 10.1016/j.cap.2012.11.005.
14. Pashchenko A.S., Devitsky O.V., Lunin L.S. et al. Growth of nanotextured thin films of GaInAsP and GaInAsSbBi solid solutions on GaP substrates by pulsed laser deposition, Nanosystems: Physics, Chemistry, Mathematics, 2023, vol. 14, issue 5, pp. 601-605. DOI: 10.17586/2220-8054-2023-14-5-601-605.
15. García D.M.A., Santos R.D., Liu L., Nunes W.C. Exploring morphological variation in bismuth ferrite nanostructures by pulsed laser deposition: synthesis, structural and electrochemical properties, Nanotechnology, 2024, vol. 35, issue 23, pp. 235702-1-235702-8. DOI: 10.1088/1361-6528/ad2ee1.
16. Luo J., Wang W., Zheng Y. et al. AlN/nitrided sapphire and AlN/non-nitrided sapphire hetero-structures epitaxially grown by pulsed laser deposition: A comparative study, Vacuum, 2017, vol. 143, pp. 241-244. DOI: 10.1016/j.vacuum.2017.06.012.
17. Palla-Papavlu A., Dinca V., Ion V. et al. Characterization of polymer thin films obtained by pulsed laser deposition, Applied
Surface Science, 2011, vol. 257, issue 12, pp. 5303-5307. DOI: 10.1016/j.apsusc.2010.11.140.
18. Socol M., Preda N., Socol G. Organic thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE) for photovoltaic cell applications: A review, Coatings, 2021, vol. 11, issue 11, art. no. 1368, 32 p. DOI: 10.3390/coatings11111368.
19. Hopp B., Smausz T., Kecskeméti G. et al. Femtosecond pulsed laser deposition of biological and biocompatible thin layers, Applied Surface Science, 2007, vol. 253, issue 19, pp. 7806-7809. DOI: 10.1016/j.apsusc.2007.02.102.
20. Harris S.B., Rouleau C.M., Xiao K., Vasudevan R.K. Deep learning with plasma plume image sequences for anomaly detection and prediction of growth kinetics during pulsed laser deposition, npj Computational Materials, 2024, vol. 10, issue 1, art. no. 105, 8 p. DOI: 10.1038/s41524-024-01275-w.
21. Anyanwu V.O., Moodley M.K. PLD of transparent and conductive AZO thin films, Ceramics International, 2023, vol. 49, issue 3, pp. 5311-5318. DOI: 10.1016/j.ceramint.2022.10.054.
22. Smith, H.M., Turner, A.F. Vacuum deposited thin films using a ruby laser, Applied Optics, 1965, vol. 4, issue 1, pp. 147-148. DOI: 10.1364/ao.4.000147.
23. Sheftal R.N., Cherbakov I. V. Mechanism of condensation of heteroepitaxial A3B5 layers pulse of moderate power, Crystal Research and Technology, 1981, vol. 16, issue 8, pp. 887-891. DOI: 10.1002/crat.19810160805.
24. Chowdhury F.R., Gupta M., Tsui Y.Y. Nanocrystalline GaAs thin films by pulsed laser deposition, Proceedings of SPIE, Photonics North 2012, 6-8 June 2012, Montréal, Canada, ed. by J.-C. Kieffer. Bellingham, WA, SPIE Publ., 2012, vol. 8412, pp. 84121U-1-84121U-7. DOI: 10.1117/12.2001471.
25. Li S., Lin Z., Hu W. et al. Exploration of growth conditions of TaAs Weyl semimetal thin film using pulsed laser deposition, Chinese Physics B, 2023, vol. 32, issue 4, art. no. 047103, 9 p. DOI: 10.1088/1674-1056/acb913.
26. Nguyen Van T., Laborde E., Champeaux C. et al. Tunability of optical properties of InSb films developed by pulsed laser deposition, Applied Surface Science, 2023, vol. 619, art. no. 156756, 12 p. DOI: 10.1016/j.apsusc.2023.156756.
27. Tang P., Li B., Feng L. et al. Structural, electrical and optical properties of AlSb thin films deposited by pulsed laser deposition, Journal of Alloys and Compounds, 2017, vol. 692, pp. 22-25. DOI: 10.1016/j.jallcom.2016.09.016.
28. Tang P., Wang W., Li B. et al. The properties of Zn-doped AlSb thin films prepared by pulsed laser deposition, Coatings, 2019, vol. 9, issue 2, art. no. 136, 9 p. DOI: 10.3390/coatings9020136.
29. Yimam D.T., Zhang H., Momand J., Kooi B.J. Pulsed laser deposited stoichiometric GaSb films for optoelectronic and phase change memory applications, Materials Science in Semiconductor Processing, 2021, vol. 133, art. no. 105965, 9 p. DOI: 10.1016/j.mssp.2021.105965.
30. Hafez M.A., Elamrawi K.A., Elsayed-Ali H.E. Pulsed laser deposition of InP thin films on sapphire (1000) and GaAs (100), Applied Surface Science, 2004, vol. 233, issue 1-4, pp. 42-50. DOI: 10.1016/j.apsusc.2004.02.066.
31. Iribarren A., Castro-Rodríguez R., Ponce-Cabrera L., Peña J.L. Growth of polycrystalline InP thin films by the pulsed laser deposition technique, Thin Solid Films, 2006, vol. 510, issue 1-2, pp. 134-137. DOI: 10.1016/j.tsf.2005.12.302.
32. Pashchenko A.S., Devitsky O.V., Lunin L.S. et al. Structure and morphology of GaInAsP solid solutions on GaAs substrates grown by pulsed laser deposition, Thin Solid Films, 2022, vol. 743, art. no. 139064, 8 p. DOI: 10.1016/J.TSF.2021.139064.
33. Pashchenko A.S., Devitsky O. V., Lunina M.L. et al. Epitaxial growth of GaInAsBi thin films on Si (001) substrate using pulsed laser deposition, Vacuum, 2024, vol. 227, art. no. 113372, 9 p. DOI: 10.1016/j.vacuum.2024.113372.

⇐ Prevoius journal article | Content | Next journal article ⇒