Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


High-mobility transparent conductive layers based on indium oxide doped with tungsten

A.K. Akhmedov1, A.Sh. Asvarov2, E.K. Murliev1, Z.V. Shomakhov3

1 Institute of Physics, Dagestan Federal Research Center of RAS
2 Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics, National Research Center «Kurchatov Institute»
3 Kabardino-Balkarian State University named after H.M. Berbekov

DOI: 10.26456/pcascnn/2024.16.565

Original article

Abstract: Increasing the conductivity of transparent conductive layers by increasing the mobility of free charge carriers is one of the most important tasks of transparent electronics, since its solution contributes not only to the reduction of heat losses in the layers, but also to the expansion of the spectrum of the radiation used towards the near infrared region. Currently, work in this area is being carried out in some routes, one of which is the search for new layer’s compositions that allow reducing the amount of impurity introduced while simultaneously increasing the efficiency of its ionization. In this paper, the influence of the oxygen content in the working gas and the deposition temperature on the morphology, microstructure, electrical, and optical characteristics of thin layers deposited by high-frequency magnetron sputtering of an ceramic target based on In2O3 with the addition of 1 wt.% WO3 was investigated. It was found that the maximum mobility (59 cm2/V٠s) and minimum specific resistance (7,8×10–4 Ohm٠cm) are achieved in layers synthesized at 300°C in the pure argon atmosphere. For comparison, layers based on a solid solution of indium and tin oxides, widely used in the formation of transparent electrodes in various optoelectronic applications, were obtained under identical conditions. It was shown that layers based on indium oxide doped with tungsten retain acceptable transparency in a wide spectral range, up to 2000 nm, and are, therefore, preferable for use in devices operating in the near infrared range, for example, in solar energy converters or night vision devices.

Keywords: transparent electrode, indium oxide, doping, magnetron sputtering, transparency, electrical conductivity

  • Akhmed K. Akhmedov – Ph. D., Leading Researcher, Institute of Physics, Dagestan Federal Research Center of RAS
  • Abil Sh. Asvarov – Ph. D., Senior Researcher, Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics, National Research Center «Kurchatov Institute»
  • Eldar K. Murliev – Junior Researcher, Institute of Physics, Dagestan Federal Research Center of RAS
  • Zamir V. Shomakhov – Ph. D., Director of the Institute of artificial intelligence and digital technologies, Kabardino-Balkarian State University named after H.M. Berbekov

Reference:

Akhmedov, A.K. High-mobility transparent conductive layers based on indium oxide doped with tungsten / A.K. Akhmedov, A.Sh. Asvarov, E.K. Murliev, Z.V. Shomakhov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 565-574. DOI: 10.26456/pcascnn/2024.16.565. (In Russian).

Full article (in Russian): download PDF file

References:

1. Shomakhov Z.V., Nalimova S.S., Rybina A.A. et al. Uluchshenie sensornykh kharakteristik binarnykh i trojnykh oksidnykh nanosistem [Improving the sensor characteristics of binary and ternary oxide nanosystems], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 879-887. DOI: 10.26456/pcascnn/2023.15.692. (In Russian).
2. Nalimova S.S., Shomakhov Z.V., Gerasimova K.V. et al. Gazochuvstvitel'nye kompozitnye nanostruktury na osnove oksida tsinka dlya detektirovaniya parov organicheskikh rastvoritelej [Gas-sensitive composite nanostructures based on zinc oxide for detecting organic solvent vapors], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 879-887. DOI: 10.26456/pcascnn/2022.14.678. (In Russian).
3. Shomakhov Z.V., Nalimova S.S., Shurdumov B.Z. Nanostruktury stannata tsinka dlya gazovykh sensorov s vysokim bystrodejstviem [Zinc stannate nanostructures for fast response gas sensors], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 726-735. DOI: 10.26456/pcascnn/2022.14.726. (In Russian).
4. Minami T. Transparent conducting oxide semiconductors for transparent electrodes, Semiconductors Science and Technology, 2005, vol. 20, no. 4, pp. S35-S44. DOI: 10.1088/0268-1242/20/4/004.
5. Liu H., Avrutin V., Izyumskaya N., Özgür Ü., Morkoç H. Transparent conducting oxides for electrode applications in light emitting and absorbing devices, Superlattices and Microstructures, 2010, vol. 48, issue 5, pp. 458-484. DOI: 10.1016/j.spmi.2010.08.011.
6. Stadler A. Transparent conducting oxides – an up-to-date overview, Materials, 2012, vol. 5, issue 4, pp. 661-683. DOI: 10.3390/ma5040661.
7. Calnan S., Tiwari A.N. High mobility transparent conducting oxides for thin film solar cells, Thin Solid Films, 2010, vol. 518, issue 7, pp. 1839-1849. DOI: 10.1016/j.tsf.2009.09.044.
8. Holman Z.C., Filipic M., Descoeudres A., De Wolf S., Smole F., Topic M., Ballif C. Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells, Journal of Applied Physics, 2013, vol. 113, issue 1, pp. 013107-1-013107-13. DOI: 10.1063/1.4772975.
9. Bikowski A., Ellmer K. Analytical model of electron transport in polycrystalline, degenerately doped ZnO films, Journal of Applied Physics, 2014, vol. 116, issue 14, pp. 143704-1-143704-11. DOI: 10.1063/1.4896839.
10. Hosono H. Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application, Journal of
Non-Crystalline Solids, 2003, vol. 352, issue 9-20, pp. 851-858. DOI: 10.1016/j.jnoncrysol.2006.01.073.
11. Akhmedov A.K., Murliev E.K., Asvarov A.S., Muslimov A.E., Kanevsky V.M. Transparent conductive indium zinc oxide films: temperature and oxygen dependences of the electrical and optical properties, Coatings, 2022, vol. 12, issue 10, art. no. 1583, 12 p. DOI: 10.3390/coatings12101583.
12. Morales-Masis M., De Nicolas S.M., Holovsky J., De Wolf S., Ballif C. Low-temperature high-mobility amorphous IZO for silicon heterojunction solar cells, IEEE Journal of Photovoltaics, 2015, vol. 5, issue 5, pp. 1340-1347. DOI: 10.1109/JPHOTOV.2015.2450993.
13. Swallow J.E.N., Williamson B.A.D., Sathasivam S. et al. Resonant doping for high mobility transparent conductors: the case of Mo-doped In2O3, Materials Horizons, 2020, vol. 7, issue 1, pp. 236-243. DOI: 10.1039/C9MH01014A.
14. Koida T., Kondo M. High-mobility transparent conductive Zr-doped In2O3, Applied Physics Letters, 2006, vol. 89, issue 8, pp. 082104-1-082104-3. DOI: 10.1063/1.2337281.
15. Hashimoto R., Abe Y., Nakada T. High mobility titanium-doped In2O3 thin films prepared by sputtering/post-annealing technique, Applied Physics Express, 2008, vol. 1, no. 1., pp. 015002-1-015002-3. DOI: 10.1143/APEX.1.015002
16. Warmsingh C., Yoshida Y., Readey D.W., et al. High-mobility transparent conducting Mo-doped In2O3 thin films by pulsed laser deposition, Journal of Applied Physics, 2004, vol. 95, issue 7, pp. 3831-3833. DOI: 10.1063/1.1646468.
17. Akhmedov A.K., Asvarov A. Sh., Muslimov A.E., Kanevsky V.M. A multi-position drum-type assembly for simulaneos film deposition at different temperatures in a single sputter cicle – application to ITO thin films, Coatings, 2020, vol. 10, issue 11, art. no. 1076, 9 p. DOI: 10.3390/coatings10111076.
18. Txintxurreta J., G-Berasategui E., Ortiz R. et al. Indium tin oxide thin film deposition by magnetron sputtering at room temperature for the manufacturing of efficient transparent heaters, Coatings, 2021, vol. 11, issue 1, art. no. 92, 14 p. DOI: 10.3390/coatings11010092.
19. Kim J.H., Shin Y.-H., Seong T.-Y., Na S.-I., Kim H.-K. Rapid thermal annealed WO3 - doped In2O3 films for transparent electrodes in organic photovoltaics, Journal of Physics D: Applied Physics, 2012, vol. 45, art. no. 395104, 6 p. DOI: 10.1088/0022-3727/45/39/395104.
20. Newhouse P.F., Park C.-H., Keszler D.A., Tate J., Nyholm P.S. High electron mobility W-doped In2O3 thin films by pulsed laser deposition, Applied Physics Letters, 2005, vol. 87, issue 11, pp. 112108-1-112108-3. DOI: 10.1063/1.2048829.
21. Sommer N., Hüpkes J., Rau U. Field emission at grain boundaries: modeling the conductivity in highly doped polycrystalline semiconductors, Physical Review Applied, 2016, vol. 5, issue 2, pp. 024009-1-024009-22. DOI: 10.1103/PhysRevApplied.5.024009.

⇐ Prevoius journal article | Content | Next journal article ⇒