On the stability and structure relaxation of metallic nanocages
D.N. Sokolov, V.S. Myasnichenko, O.V. Polev, K.G. Savina, N.Yu. Sdobnyakov
Tver State University
DOI: 10.26456/pcascnn/2024.16.543
Original article
Abstract: The problem of the thermal stability of mono- and binary metallic nanocages consisting of gold and silver atoms with the same nuclearity of 3000 atoms is considered. The initial configurations of nanocages were obtained in the ClusterEvolution software by cutting them out of a larger icosahedron. The heating process for studying the thermal stability/instability was simulated in the Metropolis software using the Monte Carlo method and the Metropolis scheme. The interatomic interaction was described by the tight-binding potential. The influence of the composition, characteristic dimensions (inner and outer radii), and the shape of the inner surface in the initial configuration on the thermal stability of nanocages was studied. The temperature of complete collapse of the internal cavity of nanocages was determined. The results of calculations of the temperature dependence of the average local density and the local density profiles at different temperatures corresponding to different initial configurations, as well as the temperature evolution of the fractions of crystalline structures in them, are presented and analyzed.
Keywords: atomistic simulation, Monte Carlo method, tight-binding potential, metal nanocages, thermal effects, stability/instability, local density, crystalline phases
- Denis N. Sokolov – Ph. D., Researcher, General Physics Department, Tver State University
- Vladimir S. Myasnichenko – Researcher, General Physics Department, Tver State University
- Oleg V. Polev – 1st year graduate student, General Physics Department, Tver State University
- Kseniya G. Savina – 2nd year postgraduate student, General Physics Department, Tver State University
- Nickolay Yu. Sdobnyakov – Dr. Sc., Docent, General Physics Department, Tver State University
Reference:
Sokolov, D.N. On the stability and structure relaxation of metallic nanocages / D.N. Sokolov, V.S. Myasnichenko, O.V. Polev, K.G. Savina, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 543-556. DOI: 10.26456/pcascnn/2024.16.543. (In Russian).
Full article (in Russian): download PDF file
References:
1. Skrabalak S.E., Chen J., Sun Y. et al. Gold nanocages: synthesis, properties, and applications, Accounts of Chemical Research, 2008, vol. 41, issue 12, pp. 1587-1595. DOI: 10.1021/ar800018v.
2. Skrabalak S.E., Au L., Li L., Xia Y. Facile synthesis of Ag nanocubes and Au nanocages, Nature Protocols, 2007, vol. 2, issue 9, pp. 2182-2190. DOI: 10.1038/nprot.2007.326.
3. Zhang Y., Xu F., Sun Y. et al. Seed-mediated synthesis of Au nanocages and their electrocatalytic activity towards glucose oxidation, Chemistry – A European Journal, 2010, vol. 16, issue 30, pp. 9248-9256. DOI: 10.1002/chem.200903552.
4. Lu X., Au X., McLellan J. et al. Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH, Nano Letters, 2007, vol. 7, issue 6, pp. 1764-1769. DOI: 10.1021/nl070838l.
5. Sokolov D.N., Polev O.V., Myasnichenko V.S., Savina K.G., Sdobnyakov N.Yu. O strukturnoj stabil'nosti mono- i binarnykh metallicheskikh nanokletok [On the structural stability of mono- and binary metallic nanocages,], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 602-613. DOI: 10.26456/pcascnn/2023.15.602. (In Russian).
6. Sokolov D.N., Sdobnyakov N.Yu., Savina K.G., Kolosov A.Yu., Myasnichenko V.S. Novye vozmozhnosti vysokoproizvoditel'nykh raschetov nanosistem s ispol'zovaniem programmnogo obespecheniya Metropolis [New opportunities for high-performance simulations of nanosystem using Metropolis software], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 624-638. DOI: 10.26456/pcascnn/2021.13.624. (In Russian).
7. Myasnichenko V., Kirilov L., Mikhov R., Fidanova S., Sdobnyakov N. Simulated annealing method for metal nanoparticle structures optimization, Advanced Computing in Industrial Mathematics. BGSIAM 2017. Studies in Computational Intelligence, ed. by K. Georgiev, M. Todorov, I. Georgiev, 2019, vol. 793, pp. 277-289. DOI: 10.1007/978-3-319-97277-0_23.
8. Myasnichenko V., Sdobnyakov N., Kirilov L., Mikhov R., Fidanova S. Monte Carlo approach for modeling and optimization of one-dimensional bimetallic nanostructures, Lecture Notes in Computer Science. Conference paper: International Conference on Numerical Methods and Applications, 20-24 August 2018, Borovets, Bulgaria, 2019, vol. 11189, pp. 133-141. DOI: 10.1007/978-3-030-10692-8_15.
9. Myasnichenko V., Sdobnyakov N., Kirilov L., Mikhov R., Fidanova S. Structural instability of gold and bimetallic nanowires using Monte Carlo simulation, Recent Advances in Computational Optimization. Studies in Computational Intelligence, ed. by S. Fidanova. Cham, Springer, 2020, vol. 838, pp. 133-145. DOI: 10.1007/978-3-030-22723-4_9.
10. Myasnichenko V., Fidanova S., Mikhov R., Kirilov L., Sdobnyakov N. Representation of initial temperature as a function in simulated annealing approach for metal nanoparticle structures modeling, Advances in High Performance Computing. HPC 2019. Studies in Computational Intelligence, ed. by I. Dimov, S. Fidanova. Cham, Springer, 2021, vol. 902, pp. 61-72. DOI: 10.1007/978-3-030-55347-0_6.
11. Mikhov R., Myasnichenko V., Fidanova S., Kirilov L., Sdobnyakov N. Influence of the temperature on simulated annealing method for metal nanoparticle structures optimization, Advanced Computing in Industrial Mathematics. BGSIAM 2018, Studies in Computational Intelligence, ed. by In: I. Georgiev, H. Kostadinov, E. Lilkova. Cham, Springer, 2021, vol. 961, pp. 278-290. DOI: 10.1007/978-3-030-71616-5_25.
12. Skrabalak S.E., Au L., Lu X. et al. Gold nanocages for cancer detection and treatment, Nanomedicine, 2007, vol. 2, issue 5, pp. 657-668. DOI: 10.2217/17435889.2.5.657
13. Chen J., Wang D., Xi J. et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells, Nano Letters, 2007, vol. 7, issue 5, pp. 1318-1322. DOI: 10.1021/nl070345g.
14. Zeng J., Zhang Q., Chen J., Xia Y. A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles, Nano Letters, 2010, vol. 10, issue 1, pp. 30-35. DOI: 10.1021/nl903062e.
15. El-Toni A.M., Habila M.A., Labis J.P. et al. Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures, Nanoscale, 2016, vol. 8, issue 5, pp. 2510-2531. DOI: 10.1039/C5NR07004J.
16. Huang R., Shao G.-F., Zeng X.-M., Wen Y.-H. Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: a perspective from molecular dynamics simulations, Scientific Reports, 2014, vol. 4, art. no. 7051, 7 p. DOI: 10.1038/srep07051.
17. Vara M., Wang X., Howe J. et al. Understanding the stability of Pt-based nanocages under thermal stress using in situ electron microscopy, ChemNanoMat, 2018, vol. 4, issue 1, pp. 112-117. DOI: 10.1002/cnma.201700298.
18. Shao S., Zhu X., Ten V. et al. Understanding the impact of wall thickness on thermal stability of silver–gold nanocages, The Journal of Physical Chemistry C, 2022, vol. 126, issue 16, pp. 7337-7345. DOI: 10.1021/acs.jpcc.2c01433.
19. Myasnichenko V.S. Molekulyarnodinamicheskoe modelirovanie i bioinspirirovannaya optimizatsiya binarnykh i trojnykh metallicheskikh nanostruktur (KlasterEvolyushn) [Molecular dynamic modeling and bioinspired optimization of binary and ternary metal nanostructures (ClusterEvolution)]. Certificate RF, no. 2011615692, 2011. (In Russian).
20. Sokolov D.N., Sdobnyakov N.Yu., Kolosov A.Yu., Ershov P.M., Bogdanov S.S. Metropolis. Certificate RF, no. 2019661915, 2019. (In Russian).
21. Metropolis N., Ulam S. The Monte Carlo method, Journal of the American Statistical Association, 1949, vol. 44, issue 247, pp. 335-341. DOI: 10.2307/2280232.
22. Cleri F., Rosato V. Tight binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
23. Paz Borbón L.O. Computational studies of transition metal nanoalloys. Doctoral Thesis accepted by University of Birmingham, United Kingdom. Berlin, Heidelberg, Springer-Verlag, 2011, 155 p. DOI: 10.1007/978-3-642-18012-5.
24. Sdobnyakov N.Yu., Kolosov A.Yu., Bogdanov S.S. Modelirovanie protsessov koalestsentsii i spekaniya v mono- i bimetallicheskikh nanosistemakh: monografiya [Simulation of the processes of coalescence and sintering in mono- and bimetallic nanosystems: monograph]. Tver, Tver State University Publ., 2021, 168 p. DOI: 10.26456/skb.2021.168. (In Russian).
25. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1-015012-7. DOI: 10.1088/0965-0393/18/1/015012.
26. Sdobnyakov N.Yu., Sokolov D.N. Izuchenie termodinamicheskikh i strukturnykh kharakteristik nanochastits metallov v protsessakh plavleniya i kristallizatsii: teoriya i komp'yuternoe modelirovanie: monografiya [Study of the thermodynamic and structural characteristics of metal nanoparticles in the processes of melting and crystallization: theory and computer modeling: monograph]. Tver, Tver State University Publ., 2018, 176 p. (In Russian).