Structural transformations in binary Ti-V nanoparticles: size effect and effect of composition change
K.G. Savina, A.D. Veselov, R.E. Grigoryev, S.A. Veresov, P.M. Ershov, D.R. Zorin, N.Yu. Sdobnyakov
Tver State University
DOI: 10.26456/pcascnn/2024.16.532
Original article
Abstract: The processes of the structure formation in Ti-V binary nanoparticles and the factors influencing the crystallization process are discussed. The objects of study were Ti-V binary nanoparticles containing N=200, 400, 800, 1520, 3000, and 5000 atoms with various compositions. The computer experiment was conducted using the molecular dynamics method. Interatomic interactions were described using the tight-binding potential. Based on a series of computer experiments, it was determined that the crystallization process of Ti-V binary nanoparticles is significantly dependent on both their size and component ratio. As the size of the nanoparticles increases, the crystallization temperature rises, and the component ratio has a substantial influence on the formation of crystalline phases. The lowest crystallization temperatures were observed at titanium-to-vanadium ratios of 25-75% and 50-50%. Larger nanoparticles also exhibit pronounced phase segregation, with FCC and HCP phases dominating depending on the titanium-to- vanadium ratio. The observed tendency to form a multilayered onion-like structure indicates a more complex structure formation process than surface segregation.
Keywords: molecular dynamics method, tight binding potential, binary nanoparticles, titanium, vanadium, melting, crystallization
- Kseniya G. Savina – 2nd year postgraduate student, General Physics Department, Tver State University
- Alexei D. Veselov – Researcher, General Physics Department, Tver State University
- Roman E. Grigoryev – 3rd year postgraduate student, General Physics Department, Tver State University
- Sergei A. Veresov – 3rd year postgraduate student, General Physics Department, Tver State University
- Pavel M. Ershov – Researcher, General Physics Departmen, Tver State University
- Danila R. Zorin – 1st year graduate student, General Physics Department, Tver State University
- Nickolay Yu. Sdobnyakov – Dr. Sc., Docent, General Physics Department, Tver State University
Reference:
Savina, K.G. Structural transformations in binary Ti-V nanoparticles: size effect and effect of composition change / K.G. Savina, A.D. Veselov, R.E. Grigoryev, S.A. Veresov, P.M. Ershov, D.R. Zorin, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 532-542. DOI: 10.26456/pcascnn/2024.16.532. (In Russian).
Full article (in Russian): download PDF file
References:
1. Sdobnyakov N.Yu., Sokolov D.N., Bazulev A.N. et al. Relation between the size dependences of the melting and crystallization temperatures of metallic nanoparticles, Russian Metallurgy (Metally), 2013, no. 2, pp. 100-105. DOI: 10.1134/S0036029513020110.
2. Murray J.L. The Ti−V (titanium-vanadium) system, Bulletin of Alloy Phase Diagrams, 1981, vol. 2, issue 1, pp. 48-55. DOI: 10.1007/BF02873703.
3. Samsonov V.M., Sdobnyakov N.Yu., Myasnichenko V.S. et al. A Comparative analysis of the size dependence of the melting and crystallization temperatures in silver nanoparticles via the molecular dynamics and Monte-Carlo methods, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Technique, 2018, vol. 12, no. 6, pp. 1206-1209. DOI: 10.1134/S1027451018050671.
4. Myasnichenko V.S., Ershov P.M., Savina K.G. et al. Zakonomernosti strukturoobrazovaniya v bimetallicheskikh nanochastitsakh s raznoj temperaturoj kristallizatsii [Regularities of structure formation in bimetallic nanoparticles with different crystallization temperatures], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 568-579. DOI: 10.26456/pcascnn/2021.13.568. (In Russian).
5. Sdobnyakov N.Yu., Kolosov A.Yu., Bogdanov S.S. Modelirovanie protsessov koalestsentsii i spekaniya v mono- i bimetallicheskikh nanosistemakh: monografiya [Simulation of the processes of coalescence and sintering in mono- and bimetallic nanosystems: monograph]. Tver, Tver State University Publ., 2021, 168 p. DOI: 10.26456/skb.2021.168. (In Russian).
6. Bogdanov S.S., Sdobnyakov N.Yu. Zakonomernosti strukturoobrazovaniya v binarnykh nanochastitsakh GTSK metallov pri termicheskom vozdejstvii: atomisticheskoe modelirovanie: monografiya [Patterns of structure formation in binary nanoparticles of fcc metals under thermal influence: atomistic modeling: monograph]. Tver, Tver State University Publ., 2023, 143 p. (In Russian).
7. Myasnichenko V.S., Ershov P.M., Sokolov D.N. et al. Zavisimost' temperatury steklovaniya bimetallicheskikh klasterov na osnove titana ot skorosti okhlazhdeniya [Dependence of glass transition temperature titanium-based bimetallic clusters on the cooling rate], Fundamental'nye problemy sovremennogo materialovedeniya [Basic Problems of Material Science], 2020, vol. 17, no. 3, pp. 355-362. DOI: 10.25712/ASTU.1811-1416.2020.03.012. (In Russian).
8. Myasnichenko V.S., Sdobnyakov N.Yu., Ershov P.M. Simulation of crystalline phase formation in titanium-based bimetallic
clusters, Journal of Nano Research, 2020, vol. 61, pp. 32-41. DOI: 10.4028/www.scientific.net/JNanoR.61.32.
9. Savina K.G., Grigoryev R.E., Veselov A.D. et. al. Problema polucheniya kristallicheskikh faz v processe okhlazhdeniya binarnykh nanochastic Au-Co i Ti-V [The problem of obtaining crystaline phases during cooling binary nanoparticles Au-Co and Ti-V], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 543-553. DOI: 10.26456/pcascnn/2023.15.543. (In Russian).
10. Myasnichenko V.S., Ershov P.M., Veresov S.A. et. al. Razmernyi effekt i strukturnye prevrashcheniya v ternarnykh nanochastitsakh Tix-Al96-x-V [Size effect and structural transformations in ternary nanoparticles Tix-Al96-x-V4], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 495-506. DOI: 10.26456/pcascnn/2023.15.495. (In Russian).
11. Sdobnyakov N.Yu., Samsonov V.M., Myasnichenko V.S. et al. Effect of cooling rate on structural transformations in Ti-Al-V nanoalloy: molecular dynamics study, Journal of Physics: Conference Series, 2021, vol. 2052, art. no. 012038, 4 p. DOI: 10.1088/1742-6596/2052/1/012038.
12. Chen T., Lin H., Guan B. et al. Promoting the low temperature activity of Ti–V–O catalysts by premixed flame synthesis, Chemical Engineering Journal, 2016, vol. 296, pp. 45-55. DOI: 10.1016/j.cej.2015.08.115.
13. Wan C., Ju X., Qi Y. et al. Synchrotron EXAFS and XRD studies of Ti–V–Cr hydrogen absorbing alloy, International Journal of Hydrogen Energy, 2010, vol. 35, issue 7, pp. 2915-2920. DOI: 10.1016/j.ijhydene.2009.05.034.
14. Liu T., Chen C., Wang H. et al. Enhanced hydrogen storage properties of mg–ti–v nanocomposite at moderate temperatures, The Journal of Physical Chemistry C, 2014, vol. 118, issue 39, pp. 22419-22425. DOI: 10.1021/jp5061073.
15. Yang X., Zhang Z., Wang B. et al. A novel and high-strength Ti–Al–V–Fe alloy prepared by spark plasma sintering, Powder Metallurgy, 2021, vol. 64, issue 5, pp. 387-395. DOI: 10.1080/00325899.2021.1915609.
16. Li Y., Ding D., Ning C. et al. Thermal stability and in vitro bioactivity of Ti–Al–V–O nanostructures fabricated on Ti6Al4V alloy, Nanotechnology, 2009, vol. 20, issue 6, art no. 065708, 6 p. DOI: 10.1088/0957-4484/20/6/065708.
17. Salek G., Bellanger B., Mjejri I. et al. polyol synthesis of Ti-V2O5 nanoparticles and their use as electrochromic films, International Journal of Inorganic Chemistry, 2016, vol. 55, issue 19, pp. 9838-9847. DOI: 10.1021/acs.inorgchem.6b01662.
18. Abdul J.M., Kolawole S.K., Salawu G.A. Microstructure and hydrogen storage characteristics of rhodium substituted Ti-V-Cr alloys, JOM, 2021, vol. 73, issue 12, pp. 4112-4118. DOI: 10.1007/s11837-021-04952-z.
19. Suwarno S., Gosselin Y., Solberg J.K. et al. Selective hydrogen absorption from gaseous mixtures by BCC Ti-V alloys, International Journal of Hydrogen Energy, 2012, vol. 37, issue 5, pp. 4127-4138. DOI: 10.1016/j.ijhydene.2011.11.100.
20. Züttel A. Fuels – hydrogen storage | Hydrides, Encyclopedia of Electrochemical Power Sources, Amsterdam, Elsevier, 2009, pp. 440-458. DOI: 10.1016/B978-044452745-5.00325-7.
21. Sdobnyakov N.Yu., Kolosov A.Yu., Sokolov D.N. et al. Kompleksnyj podkhod k modelirovaniyu plavleniya i kristallizatsii v pyatikomponentnykh metallicheskikh nanochastitsakh: molekulyarnaya dinamika i metod Monte-Karlo [Complex approach to the simulation of melting and crystallization in five-component metallic nanoparticles: molecular dynamics and the Monte Carlo method], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 589-601. DOI: 10.26456/pcascnn/2023.15.589. (In Russian).
22. Leimkuhler B., Noorizadeh E., Theil F. A Gentle stochastic thermostat for molecular dynamics, The Journal of Statistical Physics, 2009, vol. 135, pp. 261-277. DOI: 10.1007/s10955-009-9734-0.
23. Samoletov A.A, Dettmann C.P, Chaplain M.A.J. Thermostats for «slow» configurational modes, The Journal of Statistical Physics, 2007, vol. 128, pp. 1321-1336. DOI: 10.1007/s10955-007-9365-2.
24. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
25. Paz Borbón L.O. Computational studies of transition metal nanoalloys. Doctoral Thesis accepted by University of Birmingham, United Kingdom. Berlin, Heidelberg, Springer-Verlag, 2011, 155 p. DOI: 10.1007/978-3-642-18012-5.
26. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1-015012-7. DOI: 10.1088/0965-0393/18/1/015012.
27. Sdobnyakov N.Yu., Myasnichenko V.S., San C.-H., et al. Simulation of phase transformations in titanium nanoalloy at different cooling rates, Materials Chemistry and Physics, 2019, vol. 238, art. no 121895, 9 p. DOI: 10.1016/j.matchemphys.2019.121895.