Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


On the problem of stability/instability in core-shell ternary Cu-Fe-Ni nanoparticles

N.I. Nepsha, D.N. Sokolov, A.Yu. Kolosov, K.G. Savina, R.E. Grigoryev, N.Yu. Sdobnyakov

Tver State University

DOI: 10.26456/pcascnn/2024.16.517

Original article

Abstract: The article is devoted to the study of stability of ternary Cu-Fe-Ni nanoparticles (consisting of 5400 atoms) with a core-shell structure and its relationship with the surface segregation. The main focus is on modeling their structural formation using the LAMMPS software. The authors test the hypothesis that stability of nanoparticles depends on the spontaneous segregation of one of the components to the surface. Three configurations with different atomic distributions (configuration Cu45Fe45Ni10 with random distribution of atoms, as well as configurations – Cu25Fe25@Ni50 and Fe25Ni25@Cu50) are considered, and numerical modeling is performed for each of them using molecular dynamics methods and applying the tight-binding and embedded atom method potentials. The analysis showed that copper tends to segregate to the surface, while nickel concentrates in the core, significantly affecting mechanical properties of the nanoparticles. Patterns of the defect formation and their impact on the strength of nanostructures were identified. The article emphasizes that the correct choice of shell and core can both stabilize and destabilize the nanoparticles, providing prospects for the practical application of these materials.

Keywords: molecular dynamics method, LAMMPS, embedded atom model, tight-binding potential, polyhedral template matching method, ternary nanoparticles, nickel, copper, iron, structural formation, caloric curve

  • Nikita I. Nepsha – 4th year postgraduate student, General Physics Department, Tver State University
  • Denis N. Sokolov – Ph. D., Researcher, General Physics Department, Tver State University
  • Andrei Yu. Kolosov – Ph. D., Researcher, General Physics Department, Tver State University
  • Kseniya G. Savina – 2nd year postgraduate student, General Physics Department, Tver State University
  • Roman E. Grigoryev – 3rd year postgraduate student, General Physics Department, Tver State University
  • Nickolay Yu. Sdobnyakov – Dr. Sc., Docent, General Physics Department, Tver State University

Reference:

Nepsha, N.I. On the problem of stability/instability in core-shell ternary Cu-Fe-Ni nanoparticles / N.I. Nepsha, D.N. Sokolov, A.Yu. Kolosov, K.G. Savina, R.E. Grigoryev, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 517-531. DOI: 10.26456/pcascnn/2024.16.517. (In Russian).

Full article (in Russian): download PDF file

References:

1. Wang H.-L., Yan J.-M., Wang Z.-L., Jiang Q. One-step synthesis of Cu@FeNi core-shell nanoparticles: Highly active catalyst for hydrolytic dehydrogenation of ammonia borane, International Journal of Hydrogen Energy, 2012, vol. 37, issue 13, pp. 10229-10235. DOI: 10.1016/j.ijhydene.2012.04.007.
2. Asakura H., Kirihara M., Fujita K. et al. Fe-modified CuNi alloy catalyst as a nonprecious metal catalyst for three-way catalysis, Industrial & Engineering Chemistry Research, 2020, vol. 59, issue 45, pp. 19907-19917. DOI: 10.1021/acs.iecr.0c03389.
3. Khalaf M.M., Abd el-Lateef H.M., Alnajjar A.O., Mohamed I.M.A. A facile chemical synthesis of CuxNi(1−x)Fe2O4 nanoparticles as a nonprecious ferrite material for electrocatalytic oxidation of acetaldehyde, Scientific Reports, 2020, vol. 10, art. no. 2761, 14 p. DOI: 10.1038/s41598-020-59655-3.
4. Khlebnikova Yu.V., Rodionov D.P., Gervas’eva I.V., Suaridze T. R., Egorova L. Yu. Creation of a sharp cube texture in ribbon substrates of Cu–40% Ni–M (M = Fe, Cr, V) ternary alloys for high-temperature second generation superconductors, The Physics of Metals and Metallography, 2016, vol. 117, issue 11, pp. 1129-1137. DOI: 10.1134/S0031918X16110077.
5. Fang F., Zheng C., Lou H.Q., Sui R. Bonding of silicon nitride ceramics using Fe–Ni/Cu/Ni/Cu/Fe–Ni interlayers, Materials Letters, 2001, vol. 47, issue 3, pp. 178-181. DOI: 10.1016/S0167-577X(00)00232-9.
6. Goupil G., Helle S., Davis B. et al. Anodic behavior of mechanically alloyed Cu–Ni–Fe and Cu–Ni–Fe–O electrodes for aluminum electrolysis in low-temperature KF-AlF3 electrolyte, Electrochimica Acta, 2013, vol. 112, pp. 176-182. DOI: 10.1016/j.electacta.2013.08.157.
7. Arslan H., Dogan A. Determination of surface tension of liquid ternary Ni–Cu–Fe and sub-binary alloys, Philosophical Magazine, 2019, vol. 99, issue 10, pp. 1206-1224. DOI: 10.1080/14786435.2019.1576937.
8. Brillo J., Egry I., Matsushita T. Density and surface tension of liquid ternary Ni–Cu–Fe alloys, International Journal of Thermophysics, 2006, vol. 27, issue 6, pp. 1778-1791. DOI: 10.1007/s10765-006-0121-7.
9. Sarac U., Kaya M., Baykul M. C. Differences observed in the surface morphology and microstructure of Ni-Fe-Cu ternary thin films electrochemically deposited at low and high applied current densities, Journal of Physics: Conference Series, 2016, vol. 766, art. no 012025, 6 p. DOI: 10.1088/1742-6596/766/1/012025.
10. Zhu L.-S., Zhao S.-J. Influence of Ni on Cu precipitation in Fe-Cu-Ni ternary alloy by an atomic study, Chinese Physics B, 2014, vol. 23, no. 6, art. no. 063601, 6 p. DOI: 10.1088/1674-1056/23/6/063601.
11. Wang Y., Yin J., Liu X. et al. Precipitation kinetics in binary Fe–Cu and ternary Fe–Cu–Ni alloys via kMC method, Progress in Natural Science: Materials International, 2017, vol. 27, issue 4, pp. 460-466. DOI: 10.1016/j.pnsc.2017.06.005.
12. You L.-J., Hu L.-J., Xie Y.-P., Zhao S.-J. Influence of Cu precipitation on tensile properties of Fe–Cu–Ni ternary alloy at different temperatures by molecular dynamics simulation, Computational Materials Science, 2016, vol. 118, pp. 236-244. DOI: 10.1016/j.commatsci.2016.03.018.
13. Liu K., Hu L.-J., Zhang Q.-F. et al. Effect of Ni and vacancy concentration on initial formation of Cu precipitate in Fe–Cu–Ni ternary alloys by molecular dynamics simulation, Chinese Physics B, 2017, vol. 26, no. 8, art. no. 083601, 7 p. DOI: 10.1088/1674-1056/26/8/083601.
14. Samsonov V.M., Talyzin I.V., Kartoshkin A.Yu. et al. On the problem of stability/instability of bimetallic core-shell nanostructures: molecular dynamics and thermodynamic simulations, Computational Materials Science, 2021, vol. 199, art. no. 110710, 11 p. DOI: 10.1016/j.commatsci.2021.110710.
15. Atomsk. Available at: www.url: https://atomsk.univ-lille.fr (accessed 01.09.2024).
16. LAMMPS Molecular Dynamics Simulator. Available at: www.url: http://lammps.sandia.gov. (accessed 02.09.2024).
17. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
18. Bonny G., Pasianot R.C., Castin N., Malerba L. Ternary Fe-Cu-Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing, Philosophical Magazine, 2009, vol. 89, issue 34-36, pp. 3531-3546. DOI: 10.1080/14786430903299824.
19. Verlet L. Computer «experiments» on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical Review, 1967, vol. 159, issue 1, pp. 98-103. DOI: 10.1103/PhysRev.159.98.
20. Nosé S.A. Molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, 1984, vol. 52, issue 2, pp. 255-268. DOI: 10.1080/00268978400101201.
21. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1-015012-7. DOI: 10.1088/0965-0393/18/1/015012.
22. OVITO Open Visualization Tool. Available at: www.url: http://www.ovito.org. (accessed 25.08.2024).
23. Larsen P.M., Schmidt S., Schiøtz J. Robust structural identification via polyhedral template matching, Modelling and Simulation in Materials Science and Engineering, 2016, vol. 24, no. 5, art. 055007, 18 pp. DOI: 10.1088/0965-0393/24/5/055007.
24. Sokolov D.N., Sdobnyakov N.Yu., Kolosov A.Yu., Ershov P.M., Bogdanov S.S. Metropolis. Certificate RF, no. 2019661915, 2019. (In Russian).
25. Khort A., Roslyakov S., Loginov P. Solution combustion synthesis of single-phase bimetallic nanomaterials, Nano-Structures & Nano-Objects, 2021, vol. 26, art. no. 100727, 5 p. DOI: 10.1016/j.nanoso.2021.100727.
26. Celino M., Rosato V., Di Cicco A. Role of defective icosahedra in undercooled copper, Physical Review B, 2007, vol. 75, issue 17, pp. 174210-1-174210-5. DOI: 10.1103/PhysRevB.75.174210.
27. Samsonov V.M., Vasilyev S.A., Talyzin I.V., Puitov V.V. Surface melting in nanoparticles and nanosystems. 2. Scientific and nanotechnological aspects of the role of surface melting in nanoparticles and nanosystems, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 571-588. DOI: 10.26456/pcascnn/2023.15.571. (In Russian).
28. Hu B., Liu W., Gao W. et al. Pseudo-Janus Zn/Al-based nanocomposites for Cr(VI) sorption/remediation and evolved photocatalytic functionality, Chemical Engineering Journal, 2015, vol. 277, pp. 150-158. DOI: 10.1016/j.cej.2015.04.104.
29. Nepsha N.I., Sokolov D.N., Mitinev E.S., Taktarov A.A., Sdobnyakov N.Yu. Stsenarii strukturoobrazovaniya v ternarnykh nanochastitsakh na osnove Pd-Pt pri nalichii dopanta Ni [Scenarios of structure formation in ternary nanoparticles based on Pd-Pt in the presence of Ni dopant], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 507-519. DOI: 10.26456/pcascnn/2023.15.507. (In Russian).
30. Sdobnyakov N.Yu., Myasnichenko V.S., San C.-H., et al. Simulation of phase transformations in titanium nanoalloy at different cooling rates, Materials Chemistry and Physics, 2019, vol. 238, art. no 121895, 9 p. DOI: 10.1016/j.matchemphys.2019.121895.
31. Sdobnyakov N.Yu., Samsonov V.M., Myasnichenko V.S. et al. Effect of cooling rate on structural transformations in Ti-Al-V nanoalloy: molecular dynamics study, Journal of Physics: Conference Series, 2021, vol. 2052, art. no. 012038, 4 p. DOI: 10.1088/1742-6596/2052/1/012038.
32. Veresov S.A., Savina K.G., Veselov A.D. et al. K voprosu izucheniya protsessov strukturoobrazovaniya v chetyrekhkomponentnykh nanochastitsakh [To the problem of investigating the processes of structure formation in four-component nanoparticles], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 371-382. DOI: 10.26456/pcascnn/2022.14.371. (In Russian).
33. Sdobnyakov N.Yu., Kolosov A.Yu., Sokolov D.N. et al. Kompleksnyj podkhod k modelirovaniyu plavleniya i kristallizatsii v pyatikomponentnykh metallicheskikh nanochastitsakh: molekulyarnaya dinamika i metod Monte-Karlo [Complex approach to the simulation of melting and crystallization in five-component metallic nanoparticles: molecular dynamics and the Monte Carlo method], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 589-601. DOI: 10.26456/pcascnn/2023.15.589. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒