Structure – property relationship for the fluorinealcanes
A.V. Kotomkin, Yu.D. Orlov
Tver State University
DOI: 10.26456/pcascnn/2024.16.493
Short communication
Abstract: The enthalpy of formation (ΔfH0) of molecules CH3-(CH2)n-CH2F, where 3≤n≤5, CH3-(CH2)n-CHF2(3≤n≤4), CH2F-(CH2)3-CH2F, CHF2-(CH2)3-CHF2, CF3-(CH2)3-CHF2, CF3-(CH2)3-CF3, CHF2-(CH2)3-CH2F, CF3-(CH2)3-CH2F, fluorinated isobutane C4HmFk, where 0≤m≤9, k = 10-m, and neopentane C5HmFk, where 0≤m≤11, k = 12-m has been calculated by the G4 method. Within the ΔHf0 for molecules of fluoroethanes, fluorobutanes, and fluoropropanes this values has been formed learning sample, which totally includes 180 values. The calculation scheme for the enthalpy of formation of fluorine-containing molecules M have been proposed: ΔHf0add(M) = ΔHf0(R) + a∙ΔHf0(F-F)1,2 + b∙ΔHf0(F-F)1,3 + c∙ΔHf0(F-F)1,4, where ΔHf0(R) is contribution of group R into the enthalpy of formation (R = СH3, CH2, CH, С, CH2F, CHF2, CF3, CHF, CF2, CF), ΔHf0(F-F)1,2, ΔHf0(F-F)1,3, ΔHf0(F-F)1,4 are contributions of interaction of two fluorine atoms, which bounded with the carbon atoms from one, two and three С-С bounds, respectively, a, b, c are numbers of fluorine-fluorine interactions from one, two and three С-С bounds, respectively. All the group contributions have been computed. The comparison have been shown that new scheme is more effective than the simple group-additive methods.
Keywords: structure – property relationship, thermodynamic properties, additive model, electron structure, enthalpy of formation, quantum theory of atoms in molecules, electron density, fluorine alkanes, isobutene, neopentane
- Alexei V. Kotomkin – Senior Lecturer, General Physics Department, Tver State University
- Yury D. Orlov – Dr. Sc., Full Professor, Head of the General Physics Department, Tver State University
Reference:
Kotomkin, A.V. Structure – property relationship for the fluorinealcanes / A.V. Kotomkin, Yu.D. Orlov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 493-500. DOI: 10.26456/pcascnn/2024.16.493. (In Russian).
Full article (in Russian): download PDF file
References:
1. Lang L., Cezar H.M., Adamowicz L., Pedersen T.B. Quantum definition of molecular structure, Journal of the American Chemical Society, 2024, vol 146, № 3, pp. 1760-1764. DOI: /10.1021/jacs.3c11467.
2. Leppanen E., Akhoundian M., Sainio S. et al. Structure – property relationship on carbon electrochemistry, Carbon, 2022, vol. 200, pp. 375-389. DOI: 10.1016/j.carbon.2022.08.076.
3. Kolesov V.P., Papina T.S. Thermochemistry of haloethanes, Russian Chemical Reviews, 1983, vol. 52, issue 5, pp. 425-429. DOI: 10.1070/RC1983v052n05ABEH002829.
4. Orlov Yu.D., Lebedev Yu.A., Korsunskii B.L. Calculation of the enthalpies of formation of free radicals and the energies of dissociation of chemical bonds by the group contribution method. Communication 3.Compounds with electronegative substituents, Bulletin of the Academy of Sciences of the USSR, Division of chemical science, 1984, vol. 33, issue. 7, pp. 1424-1428. DOI: 10.1007/BF00956518.
5. Orlov Yu.D., Zaripov R.Kh., Lebedev Yu.A. Determination of enthalpies of formation of organic free radicals from bond dissociation energies 2.Halosubstituted radicals, Russian Chemical Bulletin, 1998, vol. 47, issue 4, pp. 621-624. DOI: 10.1007/BF02495965.
6. Bader R.F.W. Atoms in molecules: a quantum theory, International series of monographs on chemistry,
7. Mezey P.G. Quantum chemical shape: new density domain relations for the topology of molecular bodies, functional groups, and chemical bonding, Canadian Journal of Chemistry, 1994, vol. 72, no. 3, pp. 928-935. DOI: 10.1139/v94-120.
8. Mezey P.G. Holographic electron density shape theorem and its role in drug design and toxicological risk assessment, Journal of Chemical Information and Computer Sciences, 1999, vol. 39, issue 2, pp. 224-230. DOI: 10.1021/ci980072y.
9. Kotomkin A.V., Rusakova N.P., Turovtsev V.V., Orlov Yu.D. Elektronnye parametry 1,1,1–triftoralkanov [Electronic parameters of 1,1,1–trifluoroalkanes], Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Khimiya i Khimicheskaya Tekhnologiya [The Journal ChemChemTech], 2019, vol. 62, no. 1, pp. 31-37. DOI: 10.6060/ivkkt201962fp.5517. (In Russian).
10. Kotomkin A.V., Rusakova N.P., Turovtsev V.V., Orlov Yu.D. Elektronnye parametry molekul ryada 1,1 diftoralkanov [Electronic parameters of molecules of the 1,1 difluoroalkanes series], Vestnik Kazanskogo tekhnologicheskogo universiteta [Bulletin of the Technological University], 2015, vol. 18, no. 13, pp. 23-25. (In Russian).
11. Kotomkin A.V., Orlov Yu.D. Kvantovo-mekhanicheskij raschet strukturnykh i energeticheskikh kharakteristik С2 i С3 ftoralkanov [Quantum-mechanical calculation of the structural and energetic characteristics of the fluorinealcanes], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 456-464. DOI: 10.26456/pcascnn/2023.15.456. (In Russian).
12. Kotomkin A.V., Rusakova N.P., Turovtsev V.V., Orlov Yu.D. Elektronnye parametry monoftoralkanov [The electron parameters of the monofluoralkanes], Vestnik TvGU, seriya «Khimiya» [Bulletin of Tver State University, series «Chemistry»], 2016, no. 4, pp. 88-94. (In Russian).
13. Kotomkin A.V., Rusakova N.P., Turovtsev V.V., Orlov Yu.D. Elektronnye parametry strukturnykh izomerov k,k-diftoroktana [Electron parameters of the structural isomers of k,k-difluorooctane], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 438-445. DOI: 10.26456/pcascnn/2020.12.438. (In Russian).
14. Kotomkin A.V., Orlov Yu.D. Kvantovo-mekhanicheskij raschet strukturnykh i energeticheskikh kharakteristik ftorzameshchennykh butana [Quantum-mechanical calculation of the structural and energetic characteristics of the the fluorinated butanes], Vestnik TvGU, seriya «Khimiya» [Bulletin of Tver State University, series «Chemistry»], 2023, issue 1, pp. 20-29. DOI: 10.26456/vtchem2024.1.3. (In Russian).
15. Quiñónez P.B., Vila A.,Graña A.M., Mosquera R.A. AIM study on the influence of fluorine atoms on the alkyl chain, Chemical Physics, 2003, vol. 287, issue 1-2, pp. 227-236. DOI: 10.1016/S0301-0104(02)00993-X.
16. NIST chemistry webbook, NIST standard reference database number 69. Available at: http://webbook.nist.gov. (accessed 1.01.2024). DOI: 10.18434/T4D303.
17. Curtiss L.A., Redfern P.C., Raghavachari K. Gaussian-4 theory, The Journal of Chemical Physics, 2007, vol. 126, issue 8, pp. 084108-1-084108-12. DOI: 10.1063/1.2436888.
18. Orlov M.Yu., Chernova E.M., Turovtsev V.V., Orlov Yu.D. Enthalpies of formation of alkyl radicals, Russian Chemical Bulletin, 2014, vol. 63, issue 12, pp. 2620-2624. DOI: 10.1007/s11172-014-0788-z.