Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Studying the interaction of polyacrylonitrile oligomer chains with carbon fillers

P.V. Komarov, M.D. Malyshev, P.O. Baburkin

Tver State University

DOI: 10.26456/pcascnn/2024.16.481

Original article

Abstract: The dependence of the adhesion energy of the polyacrylonitrile oligomeric chain on the surfaces of carbon nanoparticles such as carbon nanotubes and graphene is studied in the framework of full atomistic molecular mechanics simulation using the polymer consistent force field and the open part of the condensed-phase optimized molecular potentials for atomistic simulation studies force field. The length of the polyacrylonitrile oligomer chain, the number of layers in the graphene nanoparticle, the diameter of the carbon nanotube, and the type and density of the modifier molecules on the surface of the graphene are the main parameters of the calculations. The graphene nanoparticle is taken as a limiting case corresponding to the large-diameter carbon nanotube. N-(2-aminoethyl) carbamoyl, nitrocyclohexane, benzamide, and dinitrobiphenyl are selected as surface modifiers. It is shown that with an increase in the number of layers and diameter of carbon nanotubes, the adhesion energy of the polyacrylonitrile oligomer chain increases, which allows us to consider multiwalled carbon nanotube with large diameters as a preferred filler forpolyacrylonitrile. The estimates obtained also show that when surface modifiers are used, it is possible to increase the adhesion energy of polyacrylonitrile only in the case of low surface modifier densities.

Keywords: polyacrylonitrile, carbon fibers, carbon nanotubes, graphene, computer simulation

  • Pavel V. Komarov – Dr. Sc., Docent, Department of General Physics, Leading Researcher of the Department of Scientific Research, Tver State University
  • Maxim D. Malyshev – Ph. D., Senior Lecturer, Department of Physical Chemistry, Researcher of the Scientific Research Department, Tver State University
  • Pavel O. Baburkin – Ph. D., Researcher, Department of Scientific Research, Tver State University

Reference:

Komarov, P.V. Studying the interaction of polyacrylonitrile oligomer chains with carbon fillers / P.V. Komarov, M.D. Malyshev, P.O. Baburkin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 481-492. DOI: 10.26456/pcascnn/2024.16.481. (In Russian).

Full article (in Russian): download PDF file

References:

1. Huang X. Fabrication and properties of carbon fibers, Materials, 2009, vol. 2, issue 4, pp. 2369-2403. DOI: 10.3390/ma2042369.
2. Minus M.L., Kumar S. The processing, properties, and structure of carbon fibers, The Journal of The Minerals, Metals and Materials Society, 2005, vol. 57, issue 2, pp. 52-58. DOI: 10.1007/s11837-005-0217-8.
3. Park S.-J. Carbon fibers, 2nd ed. Singapore: Springer, 2018, 358 p.
4. Nataraj S.K., Yang K.S., Aminabhavi T.M. Polyacrylonitrile-based nanofibers - A state-of-the-art-review, Progress in Polymer Science, 2012, vol. 37, issue 3, pp. 487-513. DOI: 10.1016/j.progpolymsci.2011.07.001.
5. Gupta A.K., Paliwal D.K., Bajaj P. Acrylic precursors for carbon fibers, Polymer Reviews, 1991, vol. 31, issue 1, pp. 1-89. DOI: 10.1080/15321799108021557.
6. Chang H., Luo J., Gulgunje P.V., Kumar S. Structural and functional fibers, Annual Review of Materials Research, 2017, vol. 47, pp. 331-359. DOI: 10.1146/annurev-matsci-120116-114326.
7. Newcomb B.A. Processing, structure, and properties of carbon fibers, Composites Part A: Applied Science and Manufacturing, 2016, vol. 91, issue 1, pp. 262-282. DOI: 10.1016/j.compositesa.2016.10.018.
8. Chae H.G., Sreekumar T.V., Uchida T., Kumar S.A. A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber, Polymer, 2005, vol. 46, issue 24, pp. 10925-10935. DOI: 10.1016/j.polymer.2005.08.092.
9. Jain R., Minus M.L., Chae H.G., Kumar S. Processing, structure, and properties of PAN/MWNT composite fibers, Macromolecular Materials and Engineering, 2010, vol. 295, issue 8, pp. 742-749. DOI: 10.1002/mame.201000083.
10. George E., Joy J., Anas S. Acrylonitrile-based polymer/graphene nanocomposites: A review, Polymer Composites, 2021, vol. 42, issue 10, art. no. 4961, 20 p. DOI: 10.1002/pc.26224.
11. Eom W., Lee S.H., Shin H. et al. Microstructure-controlled polyacrylonitrile/graphene fibers over 1 gigapascal strength, ACS Nano, 2021, vol. 15, issue 8, pp. 13055-13064. DOI: 10.1021/acsnano.1c02155.
12. Chae H.G., Minus M.L., Rasheed A., Kumar S. Stabilization and carbonization of gel spun polyacrylonitrile/single-wall carbon nanotube composite fibers, Polymer, 2007, vol. 48, issue 13, pp. 3781-3789. DOI: 10.1016/j.polymer.2007.04.072.
13. Andrews R., Jacques D., Rao A.M. et al. Nanotube composite carbon fibers, Applied Physics Letters, 1999, vol. 75, issue 9, pp. 1329-1331. DOI: 10.1063/1.124683.
14. Newcomb B.A., Giannuzzi L.A., Lyons K.M. et al. High resolution transmission electron microscope study on polyacrylonitrile / carbon nanotube based carbon fibers and the effect of structure development on the thermal and electrical conductivities, Carbon, 2015, vol. 93, pp. 502-514. DOI: 10.1016/j.carbon.2015.05.037.
15. Prilutsky S., Zussman E., Cohen Y. Carbonization of electrospun poly(acrylonitrile) nanofibers containing multiwalled carbon nanotubes observed by transmission electron microscope with In Situ heating, Journal Polymer Science Part B: Polymer Physics, 2010, vol. 48, issue 20, pp. 2121-2128. DOI: 10.1002/polb.22092.
16. Ye H., Lam H., Titchenal N. et al. Reinforcement and rupture behavior of carbon nanotubes–polymer nanofibers, Applied Physics Letters, 2004, vol. 85, issue 10, pp. 1775-1777. DOI: 10.1063/1.1787892.
17. Wu Q.-Y., Wu P.G., Chen X.-N., Xu Z.-K. Interactions between polyacrylonitrile and solvents: density functional theory study and two-dimensional infrared correlation analysis, The Journal of Physical Chemistry B, 2012, vol. 116, issue 28, pp. 8321-8330. DOI: 10.1021/jp304167f.
18. Pires J.M., de Oliveira O.V., Freitas L.C.G. et al. Molecular dynamic simulations of polyacrylonitrile in ethanol and water solvents, Computational and Theoretical Chemistry, 2012, vol. 995, issue 2, pp. 75-78. DOI: 10.1016/j.comptc.2012.06.032.
19. Pramanik C., Jamil T., Gissinger J.R. et al. Polyacrylonitrile interactions with carbon nanotubes in solution: conformations and binding as a function of solvent, temperature, and concentration, Advanced Functional Materials, 2019, vol. 29, issue 50, art. no. 1905247, 12 p. DOI: 10.1002/adfm.201905247.
20. Meng J., Zhang Y., Cranford S.W., Minus M.L. Nanotube dispersion and polymer conformational confinement in a nanocomposite fiber: a joint computational experimental study, The Journal of Physical Chemistry B, 2014, vol. 118, issue 31, pp. 9476-9485. DOI: 10.1021/jp504726w.
21. Saha B., Furmanchuk O., Dzenis Y., Schatz G.C. Multi-step mechanism of carbonization in templated polyacrylonitrile derived fibers: ReaxFF model uncovers origins of graphite alignment, Carbon, 2015, vol. 94, pp. 694-704. DOI: 10.1016/j.carbon.2015.07.048.
22. Lee J., Choi J.I., Cho A.E. et al. Origin and control of polyacrylonitrile alignments on carbon nanotubes and graphene nanoribbons, Advanced and Functional Materials, 2018, vol. 28, issue 15, art. no. 1706970, 7 p. DOI: 10.1002/adfm.201706970.
23. Heo S.J., Kim K.H., Han B. et al. Defect structure evolution of polyacrylonitrile and single wall carbon nanotube nanocomposites: a molecular dynamics simulation approach, Scientific Reports, 2020, vol. 10, issue 1, art. no. 11816, 10 p. DOI: 10.1038/s41598-020-68812-7.
24. Khalatur P.G. Molecular dynamics simulations in polymer science: methods and main results, Polymer Science: A Comprehensive Reference, 2012, vol. 1, pp. 417-460. DOI: 10.1016/b978-0-444-53349-4.00016-9.
25. Akhukov M.A. Chorkov V.A., Gavrilov A.A. et al. MULTICOMP package for multilevel simulation of polymer nanocomposites, Computational Materials Science, 2023, vol. 216, art. no. 111832, 16 p. DOI: 10.1016/j.commatsci.2022.111832.
26. LAMMPS molecular dynamics simulator. Available at: www.url: https://lammps.sandia.gov. (accessed 17.08.2024).
27. Sun H. Ab initio calculations and force field development for computer simulation of polysilanes, Macromolecules, 1995, vol. 28, issue 3, pp. 701-712. DOI: 10.1021/MA00107A006.
28. Sun H. COMPASS: An ab initio force-field optimized for condensed-phase applications - overview with details on alkane and benzene compounds, The Journal of Physical Chemistry B, 1998, vol. 102, issue 38, pp. 7338-7364. DOI: 10.1021/jp980939v.
29. Guenole J., Nöhring W.G., Vaid A. et al. Assessment and optimization of the fast inertial relaxation engine (FIRE) for energy minimization in atomistic simulations and its implementation in LAMMPS, Computational Materials Science, 2020, vol. 175, art. no. 109584, 10 p. DOI: 10.1016/j.commatsci.2020.109584.
30. Voevodin V.V., Antonov A.S., Nikitenko D.A. et al. Supercomputer lomonosov-2: large scale, deep monitoring and fine analytics for the user community, Supercomputing Frontiers and Innovations, 2019, vol. 6, issue 2, pp. 4-11. DOI: 10.14529/jsfi190201.

⇐ Prevoius journal article | Content | Next journal article ⇒