Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Icosahedral metallic nanoclusters: low-temperature structures or pre-melting ones?

I.V. Karakeyan, V.V. Puitov, I.V. Talyzin, V.M. Samsonov

Tver State University

DOI: 10.26456/pcascnn/2024.16.468

Original article

Abstract: Melting of cuboctahedral nanoclusters of fcc metals (Ag, Au, Cu, Ni, Pd and Pt) containing 561 atoms and a transition to icosahedral isomers preceding their melting were simulated using the isothermal molecular dynamics. The heating process was simulated in the NVT ensemble using the well-known open LAMMPS program, the Verlet velocity algorithm and the Nosé-Hoover thermostat. The interatomic interactions in metal nanoparticles were reproduced by employing the embedded atom method. At a relatively low for MD experiments heating rate of 0,15 K/ps, the cuboctahedron → icosahedron transition was observed in the face-centered cubic nanoparticles of all the above metals, except for Ag nanoparticles. However, an increase in the heating rate to 1,5 K/ps led to the fact that the cuboctahedron → icosahedron transition began to be observed in Ag nanoclusters as well. Unlike nanoparticles of other metals, the cuboctahedron → icosahedron transition in Pt nanoclusters occurs at a very low temperature, close to the initial temperature preceding the heating of the particles and equal to 10 K. In contrast, in Ni particles the cuboctahedron → icosahedron transition was observed at a temperature close to the melting point.

Keywords: metal nanoclusters, isomers, cuboctahedron-icosahedron transition, melting, molecular dynamics

  • Igor V. Karakeyan – 4th year student, Physico-technical Faculty, Tver State University
  • Vladimir V. Puitov – Laboratory assistant of Management of Scientific Research, Tver State University
  • Igor V. Talyzin – Ph. D., Researcher, Management of Scientific Research, Tver State University
  • Vladimir M. Samsonov – Dr. Sc., Full Professor, General Physics Department, Tver State University

Reference:

Karakeyan, I.V. Icosahedral metallic nanoclusters: low-temperature structures or pre-melting ones? / I.V. Karakeyan, V.V. Puitov, I.V. Talyzin, V.M. Samsonov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 468-480. DOI: 10.26456/pcascnn/2024.16.468. (In Russian).

Full article (in Russian): download PDF file

References:

1. Ino S. Epitaxial growth of metals on rocksalt faces cleaved in vacuum. II. Orientation and structure of gold particles formed in ultrahigh, Journal of the Physical Society of Japan, 1966, vol. 21, no. 2, pp. 346-362. DOI: 10.1143/JPSJ.21.346.
2. Allpress J.G., Sanders J.V. The structure and orientation of crystals in deposits of metals on mica, Surface Science, 1967, vol. 7, issue 1, pp. 1-25. DOI: 10.1016/0039-6028(67)90062-3.
3. Marks L.D. Experimental studies of small particle structures, Reports on Progress in Physics, 1994, vol. 57, issue 6, pp. 603-649. DOI: 10.1088/0034-4885/57/6/002.
4. Samsonov V.M., Vasilev S.A., Talyzin I.V., Nebyvalova K.K., Puitov V.V. Nanothermodynamics on the example of metallic nanoparticles, Russian Journal of Physical Chemistry A, 2023, vol. 97, issue 8, pp. 1751-1760. DOI: 10.1134/S003602442308023X.
5. Balleto F., Mottet C., Ferrando R. Reentrant morphology transition in the growth of free silver, Physical Review Letters, 2000, vol. 84, issue 24, pp. 5544-5547. DOI: 10.1103/PhysRevLett.84.5544.
6. Kittel C. Introduction to solid state physics, 4th ed. New York, John Wiley Publishing, 1971, 766 p.
7. Hall B.D., Flüeli M., Monot. R., Borel J.-P. Multiply twinned structures in unsupported ultrafine silver particles observed by electron diffraction, Physical Review B, 1991, vol. 43, issue 5, pp. 3906-3917. DOI: 10.1103/PhysRevB.43.3906.
8. Reinhard D., Hall B. D., Berthoud P., Valkealahti S., Monot R. Size-dependent icosahedral-to-fcc structure change confirmed in unsupported nanometer-sized copper clusters, Physical Review Letters, 1997, vol. 79, issue 8, pp. 1459-1462. DOI: 10.1103/PhysRevLett.79.1459.
9. Ino S. Stability of multiply-twinned particles, Journal of the Physical Society of Japan, 1969, vol. 27, no. 4, pp. 941-953. DOI: 10.1143/JPSJ.27.941.
10. Marks L.D. Surface structure and energetics of multiply twinned particles, Philosophical Magazine A, 1984, vol. 49, issue 1, pp. 81-93. DOI: 10.1080/01418618408233431.
11. Valkealahti S., Manninen M. Instability of cuboctahedral copper clusters, Physical Review B, 1992, vol. 45, issue 16, pp. 9459-9462. DOI: 10.1103/PhysRevB.45.9459.
12. Myasnichenko V.S., Razavi M., Outokesh M., Sdobnyakov N.Yu., Starostenkov M.D. Molecular dynamic investigation of size-dependent surface energy of icosahedral copper nanoparticles at different temperature, Letters on Materials, 2016, vol. 6, issue 4, pp. 266-270. DOI: 10.22226/2410-3535-2016-4-266-270.
13. Foster D.M., Ferrando R., Palmer R.E. Experimental determination of the energy difference between competing isomers of deposited, size-selected gold nanoclusters, Nature Communications, 2018, vol. 9, art. no. 1323, 6 p. DOI: 10.1038/s41467-018-03794-9.
14. Gafner S.L., Redel’ L.V., Goloven’ko Zh.V. et al. Structural transitions in small nickel clusters, Journal of Experimental and
Theoretical Physics Letters, 2009, vol. 89, issue 7, pp. 364-369. DOI: 10.1134/s0021364009070121.
15. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
16. Thompson A.P., Aktulga H.M., Berger R. et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Computer Physics Communications, 2022, vol. 271, art. no. 108171, 34 p. DOI: 10.1016/j.cpc.2021.108171.
17. Samsonov V.M., Talyzin I.V., Vasilyev S.A., Puytov V.V., Romanov A.A. On surface pre-melting of metallic nanoparticles: molecular dynamics study, Journal of Nanoparticle Research, 2023, vol. 25, issue 6, art. no. 105, 15 p. DOI: 10.1007/s11051-023-05743-0.
18. Adams J.B., Foiles S.M., Wolfer W.G. Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method, Journal of Materials Research, 1989, vol. 4, issue 1, pp. 102-112. DOI: 10.1557/JMR.1989.0102.
19. Foiles S.M., Baskes M.I., Daw M.S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Physical Review B, 1986, vol. 33, issue 12, pp. 7983-7991. DOI: 10.1103/PhysRevB.33.7983.
20. Polak W.Z. Efficiency in identification of internal structure in simulated monoatomic clusters: Comparison between common neighbor analysis and coordination polyhedron method, Computational Materials Science, 2022, vol. 201, art. no. 110882, 8 p. DOI: 10.1016/j.commatsci.2021.110882.
21. Qi Y., Çağin T., Johnson W.L., Goddard III W.A. Melting and crystallization in Ni nanoclusters: the mesoscale regime, The Journal of Chemical Physics, 2001, vol. 115, issue 1, pp. 385-394. DOI: 10.1063/1.1373664.
22. Samsonov V.M., Kharechkin S.S., Gafner S.L., Redel’ L.V., Gafner Yu.Ya. Molecular dynamics study of the melting and crystallization of nanoparticles, Crystallography Reports, 2009, vol. 54, issue 3, pp. 526-531. DOI: 10.1134/S1063774509030250.
23. Samsonov V.M., Bembel A.G., Shakulo O.V., Vasilyev S.A. Comparative molecular dynamics study of melting and crystallization of Ni and Au nanoclusters, Crystallography Reports, 2014, vol. 59, issue 4, pp. 580-585. DOI: 10.1134/S1063774514040166.
24. Sdobnyakov N.Yu., Sokolov D.N. Izuchenie termodinamicheskikh i strukturnykh kharakteristik nanochastits metallov v protsessakh plavleniya i kristallizatsii: teoriya i komp'yuternoe modelirovanie: monografiya [Study of the thermodynamic and structural characteristics of metal nanoparticles in the processes of melting and crystallization: theory and computer modeling: monograph]. Tver, Tver State University Publ., 2018, 176 p. (In Russian).
25. Puitov V.V., Talyzin I.V., Vasilyev S.A., Samsonov V.M. Razrabotka i aprobirovanie algoritmov generatsii nachal'nykh konfiguratsij izomerov metallicheskikh nanoklasterov [Generation of initial configurations of metal nanocluster isomers: algorithms and their approbation], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 474-485. DOI: 10.26456/pcascnn/2020.12.474. (In Russian).
26. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering, 2009, vol. 18, issue 1, art. no. 015012, 7 p. DOI: 10.1088/0965-0393/18/1/015012.
27. Beloshapka V., Melnick A., Soolshenko V., Pimenov D. Dynamics of transformation of small fcc crystal into icosahedral nanoparticles, Journal of Nano- and Electronic Physics, 2021, vol. 13, no. 5, art. no. 05021, 5 p. DOI: 10.21272/jnep.13(5).05021.

⇐ Prevoius journal article | Content | Next journal article ⇒